annotate Lib/fftw-3.2.1/doc/html/.svn/text-base/Real_002ddata-DFTs.html.svn-base @ 12:761289a660c6

Fixed Spectral Contrast and Periodicity
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Mon, 17 Aug 2015 19:16:33 +0100
parents 25bf17994ef1
children
rev   line source
d@0 1 <html lang="en">
d@0 2 <head>
d@0 3 <title>Real-data DFTs - FFTW 3.2.1</title>
d@0 4 <meta http-equiv="Content-Type" content="text/html">
d@0 5 <meta name="description" content="FFTW 3.2.1">
d@0 6 <meta name="generator" content="makeinfo 4.8">
d@0 7 <link title="Top" rel="start" href="index.html#Top">
d@0 8 <link rel="up" href="Basic-Interface.html#Basic-Interface" title="Basic Interface">
d@0 9 <link rel="prev" href="Planner-Flags.html#Planner-Flags" title="Planner Flags">
d@0 10 <link rel="next" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format" title="Real-data DFT Array Format">
d@0 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
d@0 12 <!--
d@0 13 This manual is for FFTW
d@0 14 (version 3.2.1, 5 February 2009).
d@0 15
d@0 16 Copyright (C) 2003 Matteo Frigo.
d@0 17
d@0 18 Copyright (C) 2003 Massachusetts Institute of Technology.
d@0 19
d@0 20 Permission is granted to make and distribute verbatim copies of
d@0 21 this manual provided the copyright notice and this permission
d@0 22 notice are preserved on all copies.
d@0 23
d@0 24 Permission is granted to copy and distribute modified versions of
d@0 25 this manual under the conditions for verbatim copying, provided
d@0 26 that the entire resulting derived work is distributed under the
d@0 27 terms of a permission notice identical to this one.
d@0 28
d@0 29 Permission is granted to copy and distribute translations of this
d@0 30 manual into another language, under the above conditions for
d@0 31 modified versions, except that this permission notice may be
d@0 32 stated in a translation approved by the Free Software Foundation.
d@0 33 -->
d@0 34 <meta http-equiv="Content-Style-Type" content="text/css">
d@0 35 <style type="text/css"><!--
d@0 36 pre.display { font-family:inherit }
d@0 37 pre.format { font-family:inherit }
d@0 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
d@0 39 pre.smallformat { font-family:inherit; font-size:smaller }
d@0 40 pre.smallexample { font-size:smaller }
d@0 41 pre.smalllisp { font-size:smaller }
d@0 42 span.sc { font-variant:small-caps }
d@0 43 span.roman { font-family:serif; font-weight:normal; }
d@0 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
d@0 45 --></style>
d@0 46 </head>
d@0 47 <body>
d@0 48 <div class="node">
d@0 49 <p>
d@0 50 <a name="Real-data-DFTs"></a>
d@0 51 <a name="Real_002ddata-DFTs"></a>
d@0 52 Next:&nbsp;<a rel="next" accesskey="n" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>,
d@0 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="Planner-Flags.html#Planner-Flags">Planner Flags</a>,
d@0 54 Up:&nbsp;<a rel="up" accesskey="u" href="Basic-Interface.html#Basic-Interface">Basic Interface</a>
d@0 55 <hr>
d@0 56 </div>
d@0 57
d@0 58 <h4 class="subsection">4.3.3 Real-data DFTs</h4>
d@0 59
d@0 60 <pre class="example"> fftw_plan fftw_plan_dft_r2c_1d(int n,
d@0 61 double *in, fftw_complex *out,
d@0 62 unsigned flags);
d@0 63 fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
d@0 64 double *in, fftw_complex *out,
d@0 65 unsigned flags);
d@0 66 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
d@0 67 double *in, fftw_complex *out,
d@0 68 unsigned flags);
d@0 69 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
d@0 70 double *in, fftw_complex *out,
d@0 71 unsigned flags);
d@0 72 </pre>
d@0 73 <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f1d-176"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f2d-177"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-178"></a><a name="index-fftw_005fplan_005fdft_005fr2c-179"></a><a name="index-r2c-180"></a>
d@0 74 Plan a real-input/complex-output discrete Fourier transform (DFT) in
d@0 75 zero or more dimensions, returning an <code>fftw_plan</code> (see <a href="Using-Plans.html#Using-Plans">Using Plans</a>).
d@0 76
d@0 77 <p>Once you have created a plan for a certain transform type and
d@0 78 parameters, then creating another plan of the same type and parameters,
d@0 79 but for different arrays, is fast and shares constant data with the
d@0 80 first plan (if it still exists).
d@0 81
d@0 82 <p>The planner returns <code>NULL</code> if the plan cannot be created. A
d@0 83 non-<code>NULL</code> plan is always returned by the basic interface unless
d@0 84 you are using a customized FFTW configuration supporting a restricted
d@0 85 set of transforms, or if you use the <code>FFTW_PRESERVE_INPUT</code> flag
d@0 86 with a multi-dimensional out-of-place c2r transform (see below).
d@0 87
d@0 88 <h5 class="subsubheading">Arguments</h5>
d@0 89
d@0 90 <ul>
d@0 91 <li><code>rank</code> is the dimensionality of the transform (it should be the
d@0 92 size of the array <code>*n</code>), and can be any non-negative integer. The
d@0 93 `<samp><span class="samp">_1d</span></samp>', `<samp><span class="samp">_2d</span></samp>', and `<samp><span class="samp">_3d</span></samp>' planners correspond to a
d@0 94 <code>rank</code> of <code>1</code>, <code>2</code>, and <code>3</code>, respectively. A
d@0 95 <code>rank</code> of zero is equivalent to a transform of size 1, i.e. a copy
d@0 96 of one number (with zero imaginary part) from input to output.
d@0 97
d@0 98 <li><code>n</code>, or <code>n0</code>/<code>n1</code>/<code>n2</code>, or <code>n[rank]</code>,
d@0 99 respectively, gives the size of the <em>logical</em> transform dimensions.
d@0 100 They can be any positive integer. This is different in general from the
d@0 101 <em>physical</em> array dimensions, which are described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
d@0 102
d@0 103 <ul>
d@0 104 <li>FFTW is best at handling sizes of the form
d@0 105 2<sup>a</sup> 3<sup>b</sup> 5<sup>c</sup> 7<sup>d</sup>
d@0 106 11<sup>e</sup> 13<sup>f</sup>,where e+f is either 0 or 1, and the other exponents
d@0 107 are arbitrary. Other sizes are computed by means of a slow,
d@0 108 general-purpose algorithm (which nevertheless retains <i>O</i>(<i>n</i>&nbsp;log&nbsp;<i>n</i>)
d@0 109
d@0 110 <p>performance even for prime sizes). (It is possible to customize FFTW
d@0 111 for different array sizes; see <a href="Installation-and-Customization.html#Installation-and-Customization">Installation and Customization</a>.)
d@0 112 Transforms whose sizes are powers of 2 are especially fast, and
d@0 113 it is generally beneficial for the <em>last</em> dimension of an r2c/c2r
d@0 114 transform to be <em>even</em>.
d@0 115 </ul>
d@0 116
d@0 117 <li><code>in</code> and <code>out</code> point to the input and output arrays of the
d@0 118 transform, which may be the same (yielding an in-place transform).
d@0 119 <a name="index-in_002dplace-181"></a>These arrays are overwritten during planning, unless
d@0 120 <code>FFTW_ESTIMATE</code> is used in the flags. (The arrays need not be
d@0 121 initialized, but they must be allocated.) For an in-place transform, it
d@0 122 is important to remember that the real array will require padding,
d@0 123 described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
d@0 124 <a name="index-padding-182"></a>
d@0 125 <li><a name="index-flags-183"></a><code>flags</code> is a bitwise OR (`<samp><span class="samp">|</span></samp>') of zero or more planner flags,
d@0 126 as defined in <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>.
d@0 127
d@0 128 </ul>
d@0 129
d@0 130 <p>The inverse transforms, taking complex input (storing the non-redundant
d@0 131 half of a logically Hermitian array) to real output, are given by:
d@0 132
d@0 133 <pre class="example"> fftw_plan fftw_plan_dft_c2r_1d(int n,
d@0 134 fftw_complex *in, double *out,
d@0 135 unsigned flags);
d@0 136 fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,
d@0 137 fftw_complex *in, double *out,
d@0 138 unsigned flags);
d@0 139 fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,
d@0 140 fftw_complex *in, double *out,
d@0 141 unsigned flags);
d@0 142 fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
d@0 143 fftw_complex *in, double *out,
d@0 144 unsigned flags);
d@0 145 </pre>
d@0 146 <p><a name="index-fftw_005fplan_005fdft_005fc2r_005f1d-184"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f2d-185"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f3d-186"></a><a name="index-fftw_005fplan_005fdft_005fc2r-187"></a><a name="index-c2r-188"></a>
d@0 147 The arguments are the same as for the r2c transforms, except that the
d@0 148 input and output data formats are reversed.
d@0 149
d@0 150 <p>FFTW computes an unnormalized transform: computing an r2c followed by a
d@0 151 c2r transform (or vice versa) will result in the original data
d@0 152 multiplied by the size of the transform (the product of the logical
d@0 153 dimensions).
d@0 154 <a name="index-normalization-189"></a>An r2c transform produces the same output as a <code>FFTW_FORWARD</code>
d@0 155 complex DFT of the same input, and a c2r transform is correspondingly
d@0 156 equivalent to <code>FFTW_BACKWARD</code>. For more information, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>.
d@0 157
d@0 158 <!-- =========> -->
d@0 159 </body></html>
d@0 160