annotate Lib/fftw-3.2.1/doc/html/.svn/text-base/1d-Real_002dodd-DFTs-_0028DSTs_0029.html.svn-base @ 12:761289a660c6

Fixed Spectral Contrast and Periodicity
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Mon, 17 Aug 2015 19:16:33 +0100
parents 25bf17994ef1
children
rev   line source
d@0 1 <html lang="en">
d@0 2 <head>
d@0 3 <title>1d Real-odd DFTs (DSTs) - FFTW 3.2.1</title>
d@0 4 <meta http-equiv="Content-Type" content="text/html">
d@0 5 <meta name="description" content="FFTW 3.2.1">
d@0 6 <meta name="generator" content="makeinfo 4.8">
d@0 7 <link title="Top" rel="start" href="index.html#Top">
d@0 8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
d@0 9 <link rel="prev" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" title="1d Real-even DFTs (DCTs)">
d@0 10 <link rel="next" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" title="1d Discrete Hartley Transforms (DHTs)">
d@0 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
d@0 12 <!--
d@0 13 This manual is for FFTW
d@0 14 (version 3.2.1, 5 February 2009).
d@0 15
d@0 16 Copyright (C) 2003 Matteo Frigo.
d@0 17
d@0 18 Copyright (C) 2003 Massachusetts Institute of Technology.
d@0 19
d@0 20 Permission is granted to make and distribute verbatim copies of
d@0 21 this manual provided the copyright notice and this permission
d@0 22 notice are preserved on all copies.
d@0 23
d@0 24 Permission is granted to copy and distribute modified versions of
d@0 25 this manual under the conditions for verbatim copying, provided
d@0 26 that the entire resulting derived work is distributed under the
d@0 27 terms of a permission notice identical to this one.
d@0 28
d@0 29 Permission is granted to copy and distribute translations of this
d@0 30 manual into another language, under the above conditions for
d@0 31 modified versions, except that this permission notice may be
d@0 32 stated in a translation approved by the Free Software Foundation.
d@0 33 -->
d@0 34 <meta http-equiv="Content-Style-Type" content="text/css">
d@0 35 <style type="text/css"><!--
d@0 36 pre.display { font-family:inherit }
d@0 37 pre.format { font-family:inherit }
d@0 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
d@0 39 pre.smallformat { font-family:inherit; font-size:smaller }
d@0 40 pre.smallexample { font-size:smaller }
d@0 41 pre.smalllisp { font-size:smaller }
d@0 42 span.sc { font-variant:small-caps }
d@0 43 span.roman { font-family:serif; font-weight:normal; }
d@0 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
d@0 45 --></style>
d@0 46 </head>
d@0 47 <body>
d@0 48 <div class="node">
d@0 49 <p>
d@0 50 <a name="1d-Real-odd-DFTs-(DSTs)"></a>
d@0 51 <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029"></a>
d@0 52 Next:&nbsp;<a rel="next" accesskey="n" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029">1d Discrete Hartley Transforms (DHTs)</a>,
d@0 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029">1d Real-even DFTs (DCTs)</a>,
d@0 54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
d@0 55 <hr>
d@0 56 </div>
d@0 57
d@0 58 <h4 class="subsection">4.8.4 1d Real-odd DFTs (DSTs)</h4>
d@0 59
d@0 60 <p>The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized
d@0 61 forward (and backward) DFTs as defined above, where the input array
d@0 62 X of length N is purely real and is also <dfn>odd</dfn> symmetry. In
d@0 63 this case, the output is odd symmetry and purely imaginary.
d@0 64 <a name="index-real_002dodd-DFT-302"></a><a name="index-RODFT-303"></a>
d@0 65 <a name="index-RODFT00-304"></a>For the case of <code>RODFT00</code>, this odd symmetry means that
d@0 66 <i>X<sub>j</sub> = -X<sub>N-j</sub></i>,where we take X to be periodic so that
d@0 67 <i>X<sub>N</sub> = X</i><sub>0</sub>. Because of this redundancy, only the first n real numbers
d@0 68 starting at j=1 are actually stored (the j=0 element is
d@0 69 zero), where N = 2(n+1).
d@0 70
d@0 71 <p>The proper definition of odd symmetry for <code>RODFT10</code>,
d@0 72 <code>RODFT01</code>, and <code>RODFT11</code> transforms is somewhat more intricate
d@0 73 because of the shifts by 1/2 of the input and/or output, although
d@0 74 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the odd symmetry, however,
d@0 75 the cosine terms in the DFT all cancel and the remaining sine terms are
d@0 76 written explicitly below. This formulation often leads people to call
d@0 77 such a transform a <dfn>discrete sine transform</dfn> (DST), although it is
d@0 78 really just a special case of the DFT.
d@0 79 <a name="index-discrete-sine-transform-305"></a><a name="index-DST-306"></a>
d@0 80 In each of the definitions below, we transform a real array X of
d@0 81 length n to a real array Y of length n:
d@0 82
d@0 83 <h5 class="subsubheading">RODFT00 (DST-I)</h5>
d@0 84
d@0 85 <p><a name="index-RODFT00-307"></a>An <code>RODFT00</code> transform (type-I DST) in FFTW is defined by:
d@0 86 <center><img src="equation-rodft00.png" align="top">.</center>
d@0 87
d@0 88 <h5 class="subsubheading">RODFT10 (DST-II)</h5>
d@0 89
d@0 90 <p><a name="index-RODFT10-308"></a>An <code>RODFT10</code> transform (type-II DST) in FFTW is defined by:
d@0 91 <center><img src="equation-rodft10.png" align="top">.</center>
d@0 92
d@0 93 <h5 class="subsubheading">RODFT01 (DST-III)</h5>
d@0 94
d@0 95 <p><a name="index-RODFT01-309"></a>An <code>RODFT01</code> transform (type-III DST) in FFTW is defined by:
d@0 96 <center><img src="equation-rodft01.png" align="top">.</center>In the case of n=1, this reduces to
d@0 97 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.
d@0 98
d@0 99 <h5 class="subsubheading">RODFT11 (DST-IV)</h5>
d@0 100
d@0 101 <p><a name="index-RODFT11-310"></a>An <code>RODFT11</code> transform (type-IV DST) in FFTW is defined by:
d@0 102 <center><img src="equation-rodft11.png" align="top">.</center>
d@0 103
d@0 104 <h5 class="subsubheading">Inverses and Normalization</h5>
d@0 105
d@0 106 <p>These definitions correspond directly to the unnormalized DFTs used
d@0 107 elsewhere in FFTW (hence the factors of 2 in front of the
d@0 108 summations). The unnormalized inverse of <code>RODFT00</code> is
d@0 109 <code>RODFT00</code>, of <code>RODFT10</code> is <code>RODFT01</code> and vice versa, and
d@0 110 of <code>RODFT11</code> is <code>RODFT11</code>. Each unnormalized inverse results
d@0 111 in the original array multiplied by N, where N is the
d@0 112 <em>logical</em> DFT size. For <code>RODFT00</code>, N=2(n+1);
d@0 113 otherwise, N=2n.
d@0 114 <a name="index-normalization-311"></a>
d@0 115 In defining the discrete sine transform, some authors also include
d@0 116 additional factors of
d@0 117 &radic;2(or its inverse) multiplying selected inputs and/or outputs. This is a
d@0 118 mostly cosmetic change that makes the transform orthogonal, but
d@0 119 sacrifices the direct equivalence to an antisymmetric DFT.
d@0 120
d@0 121 <!-- =========> -->
d@0 122 </body></html>
d@0 123