annotate Lib/fftw-3.2.1/doc/html/.svn/text-base/The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html.svn-base @ 14:636c989477e7

XML changes for Public.
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Wed, 04 May 2016 11:02:59 +0100
parents 25bf17994ef1
children
rev   line source
d@0 1 <html lang="en">
d@0 2 <head>
d@0 3 <title>The 1d Discrete Fourier Transform (DFT) - FFTW 3.2.1</title>
d@0 4 <meta http-equiv="Content-Type" content="text/html">
d@0 5 <meta name="description" content="FFTW 3.2.1">
d@0 6 <meta name="generator" content="makeinfo 4.8">
d@0 7 <link title="Top" rel="start" href="index.html#Top">
d@0 8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
d@0 9 <link rel="prev" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
d@0 10 <link rel="next" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" title="The 1d Real-data DFT">
d@0 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
d@0 12 <!--
d@0 13 This manual is for FFTW
d@0 14 (version 3.2.1, 5 February 2009).
d@0 15
d@0 16 Copyright (C) 2003 Matteo Frigo.
d@0 17
d@0 18 Copyright (C) 2003 Massachusetts Institute of Technology.
d@0 19
d@0 20 Permission is granted to make and distribute verbatim copies of
d@0 21 this manual provided the copyright notice and this permission
d@0 22 notice are preserved on all copies.
d@0 23
d@0 24 Permission is granted to copy and distribute modified versions of
d@0 25 this manual under the conditions for verbatim copying, provided
d@0 26 that the entire resulting derived work is distributed under the
d@0 27 terms of a permission notice identical to this one.
d@0 28
d@0 29 Permission is granted to copy and distribute translations of this
d@0 30 manual into another language, under the above conditions for
d@0 31 modified versions, except that this permission notice may be
d@0 32 stated in a translation approved by the Free Software Foundation.
d@0 33 -->
d@0 34 <meta http-equiv="Content-Style-Type" content="text/css">
d@0 35 <style type="text/css"><!--
d@0 36 pre.display { font-family:inherit }
d@0 37 pre.format { font-family:inherit }
d@0 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
d@0 39 pre.smallformat { font-family:inherit; font-size:smaller }
d@0 40 pre.smallexample { font-size:smaller }
d@0 41 pre.smalllisp { font-size:smaller }
d@0 42 span.sc { font-variant:small-caps }
d@0 43 span.roman { font-family:serif; font-weight:normal; }
d@0 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
d@0 45 --></style>
d@0 46 </head>
d@0 47 <body>
d@0 48 <div class="node">
d@0 49 <p>
d@0 50 <a name="The-1d-Discrete-Fourier-Transform-(DFT)"></a>
d@0 51 <a name="The-1d-Discrete-Fourier-Transform-_0028DFT_0029"></a>
d@0 52 Next:&nbsp;<a rel="next" accesskey="n" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT">The 1d Real-data DFT</a>,
d@0 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>,
d@0 54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
d@0 55 <hr>
d@0 56 </div>
d@0 57
d@0 58 <h4 class="subsection">4.8.1 The 1d Discrete Fourier Transform (DFT)</h4>
d@0 59
d@0 60 <p><a name="index-discrete-Fourier-transform-282"></a><a name="index-DFT-283"></a>The forward (<code>FFTW_FORWARD</code>) discrete Fourier transform (DFT) of a
d@0 61 1d complex array X of size n computes an array Y,
d@0 62 where:
d@0 63 <center><img src="equation-dft.png" align="top">.</center>The backward (<code>FFTW_BACKWARD</code>) DFT computes:
d@0 64 <center><img src="equation-idft.png" align="top">.</center>
d@0 65
d@0 66 <p><a name="index-normalization-284"></a>FFTW computes an unnormalized transform, in that there is no coefficient
d@0 67 in front of the summation in the DFT. In other words, applying the
d@0 68 forward and then the backward transform will multiply the input by
d@0 69 n.
d@0 70
d@0 71 <p><a name="index-frequency-285"></a>From above, an <code>FFTW_FORWARD</code> transform corresponds to a sign of
d@0 72 -1 in the exponent of the DFT. Note also that we use the
d@0 73 standard &ldquo;in-order&rdquo; output ordering&mdash;the k-th output
d@0 74 corresponds to the frequency k/n (or k/T, where T
d@0 75 is your total sampling period). For those who like to think in terms of
d@0 76 positive and negative frequencies, this means that the positive
d@0 77 frequencies are stored in the first half of the output and the negative
d@0 78 frequencies are stored in backwards order in the second half of the
d@0 79 output. (The frequency -k/n is the same as the frequency
d@0 80 (n-k)/n.)
d@0 81
d@0 82 <!-- =========> -->
d@0 83 </body></html>
d@0 84