d@0
|
1 <html lang="en">
|
d@0
|
2 <head>
|
d@0
|
3 <title>1d Real-odd DFTs (DSTs) - FFTW 3.2.1</title>
|
d@0
|
4 <meta http-equiv="Content-Type" content="text/html">
|
d@0
|
5 <meta name="description" content="FFTW 3.2.1">
|
d@0
|
6 <meta name="generator" content="makeinfo 4.8">
|
d@0
|
7 <link title="Top" rel="start" href="index.html#Top">
|
d@0
|
8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
|
d@0
|
9 <link rel="prev" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" title="1d Real-even DFTs (DCTs)">
|
d@0
|
10 <link rel="next" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" title="1d Discrete Hartley Transforms (DHTs)">
|
d@0
|
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
|
d@0
|
12 <!--
|
d@0
|
13 This manual is for FFTW
|
d@0
|
14 (version 3.2.1, 5 February 2009).
|
d@0
|
15
|
d@0
|
16 Copyright (C) 2003 Matteo Frigo.
|
d@0
|
17
|
d@0
|
18 Copyright (C) 2003 Massachusetts Institute of Technology.
|
d@0
|
19
|
d@0
|
20 Permission is granted to make and distribute verbatim copies of
|
d@0
|
21 this manual provided the copyright notice and this permission
|
d@0
|
22 notice are preserved on all copies.
|
d@0
|
23
|
d@0
|
24 Permission is granted to copy and distribute modified versions of
|
d@0
|
25 this manual under the conditions for verbatim copying, provided
|
d@0
|
26 that the entire resulting derived work is distributed under the
|
d@0
|
27 terms of a permission notice identical to this one.
|
d@0
|
28
|
d@0
|
29 Permission is granted to copy and distribute translations of this
|
d@0
|
30 manual into another language, under the above conditions for
|
d@0
|
31 modified versions, except that this permission notice may be
|
d@0
|
32 stated in a translation approved by the Free Software Foundation.
|
d@0
|
33 -->
|
d@0
|
34 <meta http-equiv="Content-Style-Type" content="text/css">
|
d@0
|
35 <style type="text/css"><!--
|
d@0
|
36 pre.display { font-family:inherit }
|
d@0
|
37 pre.format { font-family:inherit }
|
d@0
|
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
|
d@0
|
39 pre.smallformat { font-family:inherit; font-size:smaller }
|
d@0
|
40 pre.smallexample { font-size:smaller }
|
d@0
|
41 pre.smalllisp { font-size:smaller }
|
d@0
|
42 span.sc { font-variant:small-caps }
|
d@0
|
43 span.roman { font-family:serif; font-weight:normal; }
|
d@0
|
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
|
d@0
|
45 --></style>
|
d@0
|
46 </head>
|
d@0
|
47 <body>
|
d@0
|
48 <div class="node">
|
d@0
|
49 <p>
|
d@0
|
50 <a name="1d-Real-odd-DFTs-(DSTs)"></a>
|
d@0
|
51 <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029"></a>
|
d@0
|
52 Next: <a rel="next" accesskey="n" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029">1d Discrete Hartley Transforms (DHTs)</a>,
|
d@0
|
53 Previous: <a rel="previous" accesskey="p" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029">1d Real-even DFTs (DCTs)</a>,
|
d@0
|
54 Up: <a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
|
d@0
|
55 <hr>
|
d@0
|
56 </div>
|
d@0
|
57
|
d@0
|
58 <h4 class="subsection">4.8.4 1d Real-odd DFTs (DSTs)</h4>
|
d@0
|
59
|
d@0
|
60 <p>The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized
|
d@0
|
61 forward (and backward) DFTs as defined above, where the input array
|
d@0
|
62 X of length N is purely real and is also <dfn>odd</dfn> symmetry. In
|
d@0
|
63 this case, the output is odd symmetry and purely imaginary.
|
d@0
|
64 <a name="index-real_002dodd-DFT-302"></a><a name="index-RODFT-303"></a>
|
d@0
|
65 <a name="index-RODFT00-304"></a>For the case of <code>RODFT00</code>, this odd symmetry means that
|
d@0
|
66 <i>X<sub>j</sub> = -X<sub>N-j</sub></i>,where we take X to be periodic so that
|
d@0
|
67 <i>X<sub>N</sub> = X</i><sub>0</sub>. Because of this redundancy, only the first n real numbers
|
d@0
|
68 starting at j=1 are actually stored (the j=0 element is
|
d@0
|
69 zero), where N = 2(n+1).
|
d@0
|
70
|
d@0
|
71 <p>The proper definition of odd symmetry for <code>RODFT10</code>,
|
d@0
|
72 <code>RODFT01</code>, and <code>RODFT11</code> transforms is somewhat more intricate
|
d@0
|
73 because of the shifts by 1/2 of the input and/or output, although
|
d@0
|
74 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the odd symmetry, however,
|
d@0
|
75 the cosine terms in the DFT all cancel and the remaining sine terms are
|
d@0
|
76 written explicitly below. This formulation often leads people to call
|
d@0
|
77 such a transform a <dfn>discrete sine transform</dfn> (DST), although it is
|
d@0
|
78 really just a special case of the DFT.
|
d@0
|
79 <a name="index-discrete-sine-transform-305"></a><a name="index-DST-306"></a>
|
d@0
|
80 In each of the definitions below, we transform a real array X of
|
d@0
|
81 length n to a real array Y of length n:
|
d@0
|
82
|
d@0
|
83 <h5 class="subsubheading">RODFT00 (DST-I)</h5>
|
d@0
|
84
|
d@0
|
85 <p><a name="index-RODFT00-307"></a>An <code>RODFT00</code> transform (type-I DST) in FFTW is defined by:
|
d@0
|
86 <center><img src="equation-rodft00.png" align="top">.</center>
|
d@0
|
87
|
d@0
|
88 <h5 class="subsubheading">RODFT10 (DST-II)</h5>
|
d@0
|
89
|
d@0
|
90 <p><a name="index-RODFT10-308"></a>An <code>RODFT10</code> transform (type-II DST) in FFTW is defined by:
|
d@0
|
91 <center><img src="equation-rodft10.png" align="top">.</center>
|
d@0
|
92
|
d@0
|
93 <h5 class="subsubheading">RODFT01 (DST-III)</h5>
|
d@0
|
94
|
d@0
|
95 <p><a name="index-RODFT01-309"></a>An <code>RODFT01</code> transform (type-III DST) in FFTW is defined by:
|
d@0
|
96 <center><img src="equation-rodft01.png" align="top">.</center>In the case of n=1, this reduces to
|
d@0
|
97 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.
|
d@0
|
98
|
d@0
|
99 <h5 class="subsubheading">RODFT11 (DST-IV)</h5>
|
d@0
|
100
|
d@0
|
101 <p><a name="index-RODFT11-310"></a>An <code>RODFT11</code> transform (type-IV DST) in FFTW is defined by:
|
d@0
|
102 <center><img src="equation-rodft11.png" align="top">.</center>
|
d@0
|
103
|
d@0
|
104 <h5 class="subsubheading">Inverses and Normalization</h5>
|
d@0
|
105
|
d@0
|
106 <p>These definitions correspond directly to the unnormalized DFTs used
|
d@0
|
107 elsewhere in FFTW (hence the factors of 2 in front of the
|
d@0
|
108 summations). The unnormalized inverse of <code>RODFT00</code> is
|
d@0
|
109 <code>RODFT00</code>, of <code>RODFT10</code> is <code>RODFT01</code> and vice versa, and
|
d@0
|
110 of <code>RODFT11</code> is <code>RODFT11</code>. Each unnormalized inverse results
|
d@0
|
111 in the original array multiplied by N, where N is the
|
d@0
|
112 <em>logical</em> DFT size. For <code>RODFT00</code>, N=2(n+1);
|
d@0
|
113 otherwise, N=2n.
|
d@0
|
114 <a name="index-normalization-311"></a>
|
d@0
|
115 In defining the discrete sine transform, some authors also include
|
d@0
|
116 additional factors of
|
d@0
|
117 √2(or its inverse) multiplying selected inputs and/or outputs. This is a
|
d@0
|
118 mostly cosmetic change that makes the transform orthogonal, but
|
d@0
|
119 sacrifices the direct equivalence to an antisymmetric DFT.
|
d@0
|
120
|
d@0
|
121 <!-- =========> -->
|
d@0
|
122 </body></html>
|
d@0
|
123
|