d@0
|
1 <html lang="en">
|
d@0
|
2 <head>
|
d@0
|
3 <title>Real-data DFTs - FFTW 3.2.1</title>
|
d@0
|
4 <meta http-equiv="Content-Type" content="text/html">
|
d@0
|
5 <meta name="description" content="FFTW 3.2.1">
|
d@0
|
6 <meta name="generator" content="makeinfo 4.8">
|
d@0
|
7 <link title="Top" rel="start" href="index.html#Top">
|
d@0
|
8 <link rel="up" href="Basic-Interface.html#Basic-Interface" title="Basic Interface">
|
d@0
|
9 <link rel="prev" href="Planner-Flags.html#Planner-Flags" title="Planner Flags">
|
d@0
|
10 <link rel="next" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format" title="Real-data DFT Array Format">
|
d@0
|
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
|
d@0
|
12 <!--
|
d@0
|
13 This manual is for FFTW
|
d@0
|
14 (version 3.2.1, 5 February 2009).
|
d@0
|
15
|
d@0
|
16 Copyright (C) 2003 Matteo Frigo.
|
d@0
|
17
|
d@0
|
18 Copyright (C) 2003 Massachusetts Institute of Technology.
|
d@0
|
19
|
d@0
|
20 Permission is granted to make and distribute verbatim copies of
|
d@0
|
21 this manual provided the copyright notice and this permission
|
d@0
|
22 notice are preserved on all copies.
|
d@0
|
23
|
d@0
|
24 Permission is granted to copy and distribute modified versions of
|
d@0
|
25 this manual under the conditions for verbatim copying, provided
|
d@0
|
26 that the entire resulting derived work is distributed under the
|
d@0
|
27 terms of a permission notice identical to this one.
|
d@0
|
28
|
d@0
|
29 Permission is granted to copy and distribute translations of this
|
d@0
|
30 manual into another language, under the above conditions for
|
d@0
|
31 modified versions, except that this permission notice may be
|
d@0
|
32 stated in a translation approved by the Free Software Foundation.
|
d@0
|
33 -->
|
d@0
|
34 <meta http-equiv="Content-Style-Type" content="text/css">
|
d@0
|
35 <style type="text/css"><!--
|
d@0
|
36 pre.display { font-family:inherit }
|
d@0
|
37 pre.format { font-family:inherit }
|
d@0
|
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
|
d@0
|
39 pre.smallformat { font-family:inherit; font-size:smaller }
|
d@0
|
40 pre.smallexample { font-size:smaller }
|
d@0
|
41 pre.smalllisp { font-size:smaller }
|
d@0
|
42 span.sc { font-variant:small-caps }
|
d@0
|
43 span.roman { font-family:serif; font-weight:normal; }
|
d@0
|
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
|
d@0
|
45 --></style>
|
d@0
|
46 </head>
|
d@0
|
47 <body>
|
d@0
|
48 <div class="node">
|
d@0
|
49 <p>
|
d@0
|
50 <a name="Real-data-DFTs"></a>
|
d@0
|
51 <a name="Real_002ddata-DFTs"></a>
|
d@0
|
52 Next: <a rel="next" accesskey="n" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>,
|
d@0
|
53 Previous: <a rel="previous" accesskey="p" href="Planner-Flags.html#Planner-Flags">Planner Flags</a>,
|
d@0
|
54 Up: <a rel="up" accesskey="u" href="Basic-Interface.html#Basic-Interface">Basic Interface</a>
|
d@0
|
55 <hr>
|
d@0
|
56 </div>
|
d@0
|
57
|
d@0
|
58 <h4 class="subsection">4.3.3 Real-data DFTs</h4>
|
d@0
|
59
|
d@0
|
60 <pre class="example"> fftw_plan fftw_plan_dft_r2c_1d(int n,
|
d@0
|
61 double *in, fftw_complex *out,
|
d@0
|
62 unsigned flags);
|
d@0
|
63 fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
|
d@0
|
64 double *in, fftw_complex *out,
|
d@0
|
65 unsigned flags);
|
d@0
|
66 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
|
d@0
|
67 double *in, fftw_complex *out,
|
d@0
|
68 unsigned flags);
|
d@0
|
69 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
|
d@0
|
70 double *in, fftw_complex *out,
|
d@0
|
71 unsigned flags);
|
d@0
|
72 </pre>
|
d@0
|
73 <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f1d-176"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f2d-177"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-178"></a><a name="index-fftw_005fplan_005fdft_005fr2c-179"></a><a name="index-r2c-180"></a>
|
d@0
|
74 Plan a real-input/complex-output discrete Fourier transform (DFT) in
|
d@0
|
75 zero or more dimensions, returning an <code>fftw_plan</code> (see <a href="Using-Plans.html#Using-Plans">Using Plans</a>).
|
d@0
|
76
|
d@0
|
77 <p>Once you have created a plan for a certain transform type and
|
d@0
|
78 parameters, then creating another plan of the same type and parameters,
|
d@0
|
79 but for different arrays, is fast and shares constant data with the
|
d@0
|
80 first plan (if it still exists).
|
d@0
|
81
|
d@0
|
82 <p>The planner returns <code>NULL</code> if the plan cannot be created. A
|
d@0
|
83 non-<code>NULL</code> plan is always returned by the basic interface unless
|
d@0
|
84 you are using a customized FFTW configuration supporting a restricted
|
d@0
|
85 set of transforms, or if you use the <code>FFTW_PRESERVE_INPUT</code> flag
|
d@0
|
86 with a multi-dimensional out-of-place c2r transform (see below).
|
d@0
|
87
|
d@0
|
88 <h5 class="subsubheading">Arguments</h5>
|
d@0
|
89
|
d@0
|
90 <ul>
|
d@0
|
91 <li><code>rank</code> is the dimensionality of the transform (it should be the
|
d@0
|
92 size of the array <code>*n</code>), and can be any non-negative integer. The
|
d@0
|
93 `<samp><span class="samp">_1d</span></samp>', `<samp><span class="samp">_2d</span></samp>', and `<samp><span class="samp">_3d</span></samp>' planners correspond to a
|
d@0
|
94 <code>rank</code> of <code>1</code>, <code>2</code>, and <code>3</code>, respectively. A
|
d@0
|
95 <code>rank</code> of zero is equivalent to a transform of size 1, i.e. a copy
|
d@0
|
96 of one number (with zero imaginary part) from input to output.
|
d@0
|
97
|
d@0
|
98 <li><code>n</code>, or <code>n0</code>/<code>n1</code>/<code>n2</code>, or <code>n[rank]</code>,
|
d@0
|
99 respectively, gives the size of the <em>logical</em> transform dimensions.
|
d@0
|
100 They can be any positive integer. This is different in general from the
|
d@0
|
101 <em>physical</em> array dimensions, which are described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
|
d@0
|
102
|
d@0
|
103 <ul>
|
d@0
|
104 <li>FFTW is best at handling sizes of the form
|
d@0
|
105 2<sup>a</sup> 3<sup>b</sup> 5<sup>c</sup> 7<sup>d</sup>
|
d@0
|
106 11<sup>e</sup> 13<sup>f</sup>,where e+f is either 0 or 1, and the other exponents
|
d@0
|
107 are arbitrary. Other sizes are computed by means of a slow,
|
d@0
|
108 general-purpose algorithm (which nevertheless retains <i>O</i>(<i>n</i> log <i>n</i>)
|
d@0
|
109
|
d@0
|
110 <p>performance even for prime sizes). (It is possible to customize FFTW
|
d@0
|
111 for different array sizes; see <a href="Installation-and-Customization.html#Installation-and-Customization">Installation and Customization</a>.)
|
d@0
|
112 Transforms whose sizes are powers of 2 are especially fast, and
|
d@0
|
113 it is generally beneficial for the <em>last</em> dimension of an r2c/c2r
|
d@0
|
114 transform to be <em>even</em>.
|
d@0
|
115 </ul>
|
d@0
|
116
|
d@0
|
117 <li><code>in</code> and <code>out</code> point to the input and output arrays of the
|
d@0
|
118 transform, which may be the same (yielding an in-place transform).
|
d@0
|
119 <a name="index-in_002dplace-181"></a>These arrays are overwritten during planning, unless
|
d@0
|
120 <code>FFTW_ESTIMATE</code> is used in the flags. (The arrays need not be
|
d@0
|
121 initialized, but they must be allocated.) For an in-place transform, it
|
d@0
|
122 is important to remember that the real array will require padding,
|
d@0
|
123 described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
|
d@0
|
124 <a name="index-padding-182"></a>
|
d@0
|
125 <li><a name="index-flags-183"></a><code>flags</code> is a bitwise OR (`<samp><span class="samp">|</span></samp>') of zero or more planner flags,
|
d@0
|
126 as defined in <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>.
|
d@0
|
127
|
d@0
|
128 </ul>
|
d@0
|
129
|
d@0
|
130 <p>The inverse transforms, taking complex input (storing the non-redundant
|
d@0
|
131 half of a logically Hermitian array) to real output, are given by:
|
d@0
|
132
|
d@0
|
133 <pre class="example"> fftw_plan fftw_plan_dft_c2r_1d(int n,
|
d@0
|
134 fftw_complex *in, double *out,
|
d@0
|
135 unsigned flags);
|
d@0
|
136 fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,
|
d@0
|
137 fftw_complex *in, double *out,
|
d@0
|
138 unsigned flags);
|
d@0
|
139 fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,
|
d@0
|
140 fftw_complex *in, double *out,
|
d@0
|
141 unsigned flags);
|
d@0
|
142 fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
|
d@0
|
143 fftw_complex *in, double *out,
|
d@0
|
144 unsigned flags);
|
d@0
|
145 </pre>
|
d@0
|
146 <p><a name="index-fftw_005fplan_005fdft_005fc2r_005f1d-184"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f2d-185"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f3d-186"></a><a name="index-fftw_005fplan_005fdft_005fc2r-187"></a><a name="index-c2r-188"></a>
|
d@0
|
147 The arguments are the same as for the r2c transforms, except that the
|
d@0
|
148 input and output data formats are reversed.
|
d@0
|
149
|
d@0
|
150 <p>FFTW computes an unnormalized transform: computing an r2c followed by a
|
d@0
|
151 c2r transform (or vice versa) will result in the original data
|
d@0
|
152 multiplied by the size of the transform (the product of the logical
|
d@0
|
153 dimensions).
|
d@0
|
154 <a name="index-normalization-189"></a>An r2c transform produces the same output as a <code>FFTW_FORWARD</code>
|
d@0
|
155 complex DFT of the same input, and a c2r transform is correspondingly
|
d@0
|
156 equivalent to <code>FFTW_BACKWARD</code>. For more information, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>.
|
d@0
|
157
|
d@0
|
158 <!-- =========> -->
|
d@0
|
159 </body></html>
|
d@0
|
160
|