Mercurial > hg > audiodb
view mt19937/mt19937ar.c @ 408:f0a69693eaef api-inversion
The lesser of two evils, part 1.
Most of the body of audiodb_insert_datum() will apply to
"LARGE_ADB"-type insertions: checking for the right flags, checking for
enough space free, synchronizing the header. Wouldn't it be nice if we
could reuse all that code (or at least the bits that apply) without one
horrible almost-identical cut-and-paste job (see
batchinsert_large_adb(), or if that's not compelling enough, the four
almost-identical query loops from before the Great Refactoring).
Well, yes, it would. Sadly C makes it mildly difficult, because its
functions are explicitly typed (so we can't pass arbitrary arguments of
other types, even if they're ABI-compatible), while its macros are
textual (which makes writing and maintaining them horrible). The
thought of a union argument was briefly entertained and then discarded
as being just Too Weird.
So, instead, (ab)use the oldest trick in the book: void *. Define an
adb_datum_internal_t which has void * instead of double *; the intention
is that this internal data type can be constructed both from an
adb_datum_t and some notional adb_reference_t (which looks very much
like an adb_insert_t at the time of writing, with char * structure
entries representing filenames). This adb_datum_internal_t structure is
very much an internals-only thing, so put its definition in the
internals header.
Call what was previously audiodb_insert_datum() a new function
audiodb_insert_datum_internal(), made static so that really no-one is
tempted to call it other than ourselves. audiodb_insert_datum() is then
trivial in terms of this new function, if stupidly tedious. (If we were
playing dangerously, we could just perform a cast, but relying on the
fact that sizeof(double *) = sizeof(void *) would almost certainly end
up biting when we least expect.
Incidental inclusion in this patch, since I noticed it at the time:
actually check for the O2_FLAG_L2NORM before scribbling all over the
l2norm table. Somewhat unsurprisingly, there are as yet no tests to
defend against this (harmless, as it turns out) erroneous behaviour.
author | mas01cr |
---|---|
date | Tue, 09 Dec 2008 20:53:39 +0000 |
parents | d9a88cfd4ab6 |
children |
line wrap: on
line source
/* A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji Nishimura and Makoto Matsumoto. Before using, initialize the state by using init_genrand(seed) or init_by_array(init_key, key_length). Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved. Copyright (C) 2005, Mutsuo Saito, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Any feedback is very welcome. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) */ #include <stdio.h> #include "mt19937ar.h" /* Period parameters */ #define N 624 #define M 397 #define MATRIX_A 0x9908b0dfUL /* constant vector a */ #define UPPER_MASK 0x80000000UL /* most significant w-r bits */ #define LOWER_MASK 0x7fffffffUL /* least significant r bits */ static unsigned long mt[N]; /* the array for the state vector */ static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */ /* initializes mt[N] with a seed */ void init_genrand(unsigned long s) { mt[0]= s & 0xffffffffUL; for (mti=1; mti<N; mti++) { mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ mt[mti] &= 0xffffffffUL; /* for >32 bit machines */ } } /* initialize by an array with array-length */ /* init_key is the array for initializing keys */ /* key_length is its length */ /* slight change for C++, 2004/2/26 */ void init_by_array(unsigned long init_key[], int key_length) { int i, j, k; init_genrand(19650218UL); i=1; j=0; k = (N>key_length ? N : key_length); for (; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + init_key[j] + j; /* non linear */ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ i++; j++; if (i>=N) { mt[0] = mt[N-1]; i=1; } if (j>=key_length) j=0; } for (k=N-1; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) - i; /* non linear */ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ i++; if (i>=N) { mt[0] = mt[N-1]; i=1; } } mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ } /* generates a random number on [0,0xffffffff]-interval */ unsigned long genrand_int32(void) { unsigned long y; static unsigned long mag01[2]={0x0UL, MATRIX_A}; /* mag01[x] = x * MATRIX_A for x=0,1 */ if (mti >= N) { /* generate N words at one time */ int kk; if (mti == N+1) /* if init_genrand() has not been called, */ init_genrand(5489UL); /* a default initial seed is used */ for (kk=0;kk<N-M;kk++) { y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL]; } for (;kk<N-1;kk++) { y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; } y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; mti = 0; } y = mt[mti++]; /* Tempering */ y ^= (y >> 11); y ^= (y << 7) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } /* generates a random number on [0,0x7fffffff]-interval */ long genrand_int31(void) { return (long)(genrand_int32()>>1); } /* generates a random number on [0,1]-real-interval */ double genrand_real1(void) { return genrand_int32()*(1.0/4294967295.0); /* divided by 2^32-1 */ } /* generates a random number on [0,1)-real-interval */ double genrand_real2(void) { return genrand_int32()*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on (0,1)-real-interval */ double genrand_real3(void) { return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on [0,1) with 53-bit resolution*/ double genrand_res53(void) { unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6; return(a*67108864.0+b)*(1.0/9007199254740992.0); } /* These real versions are due to Isaku Wada, 2002/01/09 added */