Mercurial > hg > audiodb
view liszt.cpp @ 405:ef4792df8f93 api-inversion
invert audioDB::insert / audiodb_insert().
Start off by removing audioDB::insertDatum, and essentially reusing it
as audiodb_insert. We now ignore the fact that the command-line parsing
code has "helpfully" opened a std::ifstream for the times file and an fd
for the power file, and simply go ahead and do our own dirty work.
We can delete audioDB::insertDatum entirely, but unfortunately we can't
delete audioDB::insertPowerData and audioDB::insertTimestamps, because
the index and query code respectively use them. Instead, move the two
methods closer to their single uses.
audiodb_insert() is perhaps not as short and simple as it might have
been hoped given the existence of audiodb_insert_datum(); some of that
is C and its terribly way of making you pay every time you use dynamic
memory; some of it is the fact that the three different files (feature,
times, power) each requires slightly different treatment. Hey ho.
We can implement audiodb_batchinsert() in terms of audiodb_insert(); the
function is pleasingly small. We can't quite use it for
audioDB::batchinsert yet, as we have to deal with the O2_FLAG_LARGE_ADB
case (which codepath is untested in libtests/).
This means that we can delete whole swathes of hideous code from
audioDB.cpp, including not just the versions of audiodb_insert() and
audiodb_batchinsert() but also an entire audioDB constructor. Yay.
(audioDB::unitNormAndInsertL2 has also died a deserved death).
author | mas01cr |
---|---|
date | Fri, 05 Dec 2008 22:32:49 +0000 |
parents | 4ded52b104e6 |
children | e18843dc0aea |
line wrap: on
line source
#include "audioDB.h" void audioDB::liszt(const char* dbName, unsigned offset, unsigned numLines, adb__lisztResponse* adbLisztResponse){ if(!dbH) { initTables(dbName, 0); } assert(trackTable && fileTable); if(offset>dbH->numFiles){ char tmpStr[MAXSTR]; sprintf(tmpStr, "numFiles=%u, lisztOffset=%u", dbH->numFiles, offset); error("listKeys offset out of range", tmpStr); } if(!adbLisztResponse){ for(Uns32T k=0; k<numLines && offset+k<dbH->numFiles; k++){ fprintf(stdout, "[%d] %s (%d)\n", offset+k, fileTable+(offset+k)*O2_FILETABLE_ENTRY_SIZE, trackTable[offset+k]); } } else{ adbLisztResponse->result.Rkey = new char*[numLines]; adbLisztResponse->result.Rlen = new unsigned int[numLines]; Uns32T k = 0; for( ; k<numLines && offset+k<dbH->numFiles; k++){ adbLisztResponse->result.Rkey[k] = new char[MAXSTR]; snprintf(adbLisztResponse->result.Rkey[k], O2_MAXFILESTR, "%s", fileTable+(offset+k)*O2_FILETABLE_ENTRY_SIZE); adbLisztResponse->result.Rlen[k] = trackTable[offset+k]; } adbLisztResponse->result.__sizeRkey = k; adbLisztResponse->result.__sizeRlen = k; } }