Mercurial > hg > audiodb
view sample.cpp @ 410:d7e590d58c85 api-inversion
Pavlovian response to compiler warnings...
... attempt to squash them. For now we can get most of the way by
writing a simple write_or_goto_error() macro for write(), and the
equivalent for read().
One of the warnings, for the return value of chdir(), is silly, because
we're already in an error case, and we really can't do anything sensible
if the chdir fails. Try to deal with it anyway.
author | mas01cr |
---|---|
date | Thu, 11 Dec 2008 08:54:01 +0000 |
parents | 2d5c3f8e8c22 |
children | 0c1c8726a79b |
line wrap: on
line source
#include "audioDB.h" #include <gsl/gsl_sf.h> #include <gsl/gsl_rng.h> static double yfun(double d) { return gsl_sf_log(d) - gsl_sf_psi(d); } static double yinv(double y) { double a = 1.0e-5; double b = 1000.0; double ay = yfun(a); double by = yfun(b); double c = 0; double cy; /* FIXME: simple binary search; there's probably some clever solver in gsl somewhere which is less sucky. */ while ((b - a) > 1.0e-5) { c = (a + b) / 2; cy = yfun(c); if (cy > y) { a = c; ay = cy; } else { b = c; by = cy; } } return c; } unsigned audioDB::random_track(unsigned *propTable, unsigned total) { /* FIXME: make this O(1) by using the alias-rejection method, or some other sensible method of sampling from a discrete distribution. */ double thing = gsl_rng_uniform(rng); unsigned sofar = 0; for (unsigned int i = 0; i < dbH->numFiles; i++) { sofar += propTable[i]; if (thing < ((double) sofar / (double) total)) { return i; } } error("fell through in random_track()"); /* FIXME: decorate error's declaration so that this isn't necessary */ return 0; } void audioDB::sample(const char *dbName) { initTables(dbName, 0); if(dbH->flags & O2_FLAG_LARGE_ADB){ error("error: sample not yet supported for LARGE_ADB"); } // build track offset table (FIXME: cut'n'pasted from query.cpp) off_t *trackOffsetTable = new off_t[dbH->numFiles]; unsigned cumTrack=0; for(unsigned int k = 0; k < dbH->numFiles; k++){ trackOffsetTable[k] = cumTrack; cumTrack += trackTable[k] * dbH->dim; } unsigned *propTable = new unsigned[dbH->numFiles]; unsigned total = 0; unsigned count = 0; for (unsigned int i = 0; i < dbH->numFiles; i++) { /* what kind of a stupid language doesn't have binary max(), let alone nary? */ unsigned int prop = trackTable[i] - sequenceLength + 1; prop = prop > 0 ? prop : 0; if (prop > 0) count++; propTable[i] = prop; total += prop; } if (total == 0) { error("no sequences of this sequence length in the database", dbName); } unsigned int vlen = dbH->dim * sequenceLength; double *v1 = new double[vlen]; double *v2 = new double[vlen]; double v1norm, v2norm, v1v2; double sumdist = 0; double sumlogdist = 0; for (unsigned int i = 0; i < nsamples;) { unsigned track1 = random_track(propTable, total); unsigned track2 = random_track(propTable, total); if(track1 == track2) continue; unsigned i1 = gsl_rng_uniform_int(rng, propTable[track1]); unsigned i2 = gsl_rng_uniform_int(rng, propTable[track2]); VERB_LOG(1, "%d %d, %d %d | ", track1, i1, track2, i2); /* FIXME: this seeking, reading and distance calculation should share more code with the query loop */ if(lseek(dbfid, dbH->dataOffset + trackOffsetTable[track1] * sizeof(double) + i1 * dbH->dim * sizeof(double), SEEK_SET) == (off_t) -1) { error("seek failure", "", "lseek"); } CHECKED_READ(dbfid, v1, dbH->dim * sequenceLength * sizeof(double)); if(lseek(dbfid, dbH->dataOffset + trackOffsetTable[track2] * sizeof(double) + i2 * dbH->dim * sizeof(double), SEEK_SET) == (off_t) -1) { error("seek failure", "", "lseek"); } CHECKED_READ(dbfid, v2, dbH->dim * sequenceLength * sizeof(double)); v1norm = 0; v2norm = 0; v1v2 = 0; for (unsigned int j = 0; j < vlen; j++) { v1norm += v1[j]*v1[j]; v2norm += v2[j]*v2[j]; v1v2 += v1[j]*v2[j]; } /* FIXME: we must deal with infinities better than this; there could be all sorts of NaNs from arbitrary features. Best include power thresholds or something... */ if(isfinite(v1norm) && isfinite(v2norm) && isfinite(v1v2)) { VERB_LOG(1, "%f %f %f | ", v1norm, v2norm, v1v2); /* assume normalizedDistance == true for now */ /* FIXME: not convinced that the statistics we calculated in TASLP paper are technically valid for normalizedDistance */ double dist = 2 - 2 * v1v2 / sqrt(v1norm * v2norm); // double dist = v1norm + v2norm - 2*v1v2; VERB_LOG(1, "%f %f\n", dist, log(dist)); sumdist += dist; sumlogdist += log(dist); i++; } else { VERB_LOG(1, "infinity/NaN found: %f %f %f\n", v1norm, v2norm, v1v2); } } /* FIXME: the mean isn't really what we should be reporting here */ unsigned meanN = total / count; double sigma2 = sumdist / (sequenceLength * dbH->dim * nsamples); double d = 2 * yinv(log(sumdist/nsamples) - sumlogdist/nsamples); std::cout << "Summary statistics" << std::endl; std::cout << "number of samples: " << nsamples << std::endl; std::cout << "sum of distances (S): " << sumdist << std::endl; std::cout << "sum of log distances (L): " << sumlogdist << std::endl; /* FIXME: we'll also want some more summary statistics based on propTable, for the minimum-of-X estimate */ std::cout << "mean number of applicable sequences (N): " << meanN << std::endl; std::cout << std::endl; std::cout << "Estimated parameters" << std::endl; std::cout << "sigma^2: " << sigma2 << "; "; std::cout << "Msigma^2: " << sumdist / nsamples << std::endl; std::cout << "d: " << d << std::endl; double logw = (2 / d) * gsl_sf_log(-gsl_sf_log(0.99)); double logxthresh = gsl_sf_log(sumdist / nsamples) + logw - (2 / d) * gsl_sf_log(meanN) - gsl_sf_log(d/2) - (2 / d) * gsl_sf_log(2 / d) + (2 / d) * gsl_sf_lngamma(d / 2); std::cout << "track xthresh: " << exp(logxthresh) << std::endl; delete[] propTable; delete[] v1; delete[] v2; }