view tests/pointset_test/run-test.sh @ 333:cc3f9d1ca2cd

Ugly hack upon ugly hack: * extend adb__query() to take a bunch of other arguments that allow useful functionality through to the SOAP server; * alter the RadiusQuery reporter so that the count for tracks is returned through SOAP, punning one of the result fields for the purpose; * alter argv construction to be more dynamic, to reflect that the very presence of some arguments changes audioDB behaviour. Now test 0020 passes, only some 12 months after it was originally written, yay. Alter test 0050 also, so that the results are actually vaguely what would be expected from a radius search; they are not completely checked for correctness, but are (apart from the last two) the same as test 0040. I believe that the modifications are backward compatible; lightly testing with an old audioDB binary suggests that old-format SOAP queries continue to work. Currently too baby-encumbered to think of how to test this fully.
author mas01cr
date Mon, 01 Sep 2008 15:35:05 +0000
parents 40dca0cbbffd
children
line wrap: on
line source
#! /bin/bash

. ../test-utils.sh
NPOINTS=100
NDIM=100
RADII="0.1 0.2 0.4 0.5 0.7 0.9 01 02 05 10"
LSH_W="01 04"

GENERATE_POINTS_AND_INSERT_IN_NEW_DB=true
if [ ${GENERATE_POINTS_AND_INSERT_IN_NEW_DB} ]
    then
    if [ -f testdb ]; then rm -f testdb; fi
    
    ${AUDIODB} -d testdb -N
    
    intstring 1 > testpower
    floatstring -1 >> testpower
    
    ${AUDIODB} -d testdb -P
    
    if [ -d rad*[0-9]* ]; then rm -r rad*[0-9]*; fi
    
    for j in ${RADII}
      do
      R_SQ=`echo "scale=6; $j^2" | bc`
      mkdir -p "rad$j"
      ./genpoints2 ${NPOINTS} ${R_SQ} ${NDIM}
      mv testfeature* "rad$j"
    done
    
    for i in rad*[0-9]*/*
      do
      ${AUDIODB} -d testdb -I -f $i -w testpower
    done
    
# sequence queries require L2NORM
    ${AUDIODB} -d testdb -L
fi

for W in ${LSH_W}
  do
  for LOOP1 in 1 2 3 4 5 6 7 8 9 10
  do
    for LOOP2 in 1 2 3 4 5
      do
      rm -f testdb.lsh.*
      
#  LSH_W=1
      LSH_K=1
      LSH_M=1
      LSH_N=1000
      
      INDEXING=true
      if [ ${INDEXING} ]
	  then
	  for j in ${RADII}
	    do
	    R_SQ=`echo "scale=6; $j^2" | bc`
	    ${AUDIODB} -d testdb -X -R ${R_SQ} -l 1 --lsh_N ${LSH_N} \
		--lsh_b ${LSH_N} --lsh_k ${LSH_K} --lsh_m ${LSH_M} --lsh_w ${W} --lsh_ncols 1000 \
		--absolute-threshold -1 --no_unit_norming
	  done
      fi
  
#if [ -f cumulativeResult.txt ]; then rm -f cumulativeResult.txt;fi
  
      for j in ${RADII}
	do
	R_SQ=`echo "scale=6; $j^2" | bc`
	${AUDIODB} \
	    -d testdb -Q sequence -R ${R_SQ} -l 1 -e \
	    -f queryfeature -w testpower --absolute-threshold -1 --no_unit_norming -r 1000 > output${j}
	echo `for k in ${RADII};do egrep "^rad$k" output${j} | wc | awk '{print $1}';done` >> cumulativeResult_k1_w${W}_m1_${NDIM}.txt
      done
    done
  done
done

#Perform exact search as a sanity test
#rm -f *.lsh*
#echo
#for j in .01 .02 .03 .05 01 02 03 05 09 10
#  do
#  R_SQ=`echo "scale=6; $j^2" | bc`
#  ${AUDIODB} \
#      -d testdb -Q sequence -R ${R_SQ} -l 1 -e \
#      -f queryfeature -w testpower --absolute-threshold -1 --no_unit_norming -r 1000 > outputEUC
#  echo EUC points retrieved at Radius $j: \
#`for k in .01 .02 .03 .05 01 02 03 05 09 10; do egrep "^rad$k" outputEUC | wc | awk '{print $1}';done` 
#done

#Inspect the indexing parameters
#echo
#egrep "^INDEX:" output[1-9]
#echo