view pertrackaccumulator.h @ 473:b2fd8113d8bc api-inversion

const declarations for some API arguments. This should make it slightly clearer whose responsibility (the user's) it is to manage the memory pointed to by the corresponding arguments. Suggested by Chris Cannam.
author mas01cr
date Tue, 06 Jan 2009 16:27:01 +0000
parents 580f696c817c
children e21a3db643af
line wrap: on
line source
template <class T> class PerTrackAccumulator : public Accumulator {
public:
  PerTrackAccumulator(unsigned int pointNN, unsigned int trackNN);
  ~PerTrackAccumulator();
  void add_point(adb_result_t *r);
  adb_query_results_t *get_points();
private:
  unsigned int pointNN;
  unsigned int trackNN;
  std::map<adb_result_t, std::priority_queue< adb_result_t, std::vector<adb_result_t>, T > *, adb_result_key_lt> *queues;
  std::set< adb_result_t, adb_result_triple_lt > *set;
};

template <class T> PerTrackAccumulator<T>::PerTrackAccumulator(unsigned int pointNN, unsigned int trackNN)
  : pointNN(pointNN), trackNN(trackNN), queues(0), set(0) {
  queues = new std::map<adb_result_t, std::priority_queue< adb_result_t, std::vector<adb_result_t>, T > *, adb_result_key_lt>;
  set = new std::set< adb_result_t, adb_result_triple_lt >;
}

template <class T> PerTrackAccumulator<T>::~PerTrackAccumulator() {
  if(queues) {
    typename std::map< adb_result_t, std::priority_queue< adb_result_t, std::vector< adb_result_t >, T > *, adb_result_key_lt>::iterator it;
    for(it = queues->begin(); it != queues->end(); it++) {
      delete (*it).second;
    }
    delete queues;
  }
  if(set) {
    delete set;
  }
}

template <class T> void PerTrackAccumulator<T>::add_point(adb_result_t *r) {
  if(!isnan(r->dist)) {
    if(set->find(*r) == set->end()) {
      set->insert(*r);

      typename std::map< adb_result_t, std::priority_queue< adb_result_t, std::vector< adb_result_t >, T > *, adb_result_key_lt>::iterator it;
      std::priority_queue< adb_result_t, std::vector< adb_result_t >, T > *queue;
      it = queues->find(*r);
      if(it == queues->end()) {
        queue = new std::priority_queue< adb_result_t, std::vector< adb_result_t >, T >;
        (*queues)[*r] = queue;
      } else {
        queue = (*it).second;
      }

      queue->push(*r);
      if(queue->size() > pointNN) {
        queue->pop();
      }
    }
  }
}

template <class T> adb_query_results_t *PerTrackAccumulator<T>::get_points() {
  typename std::map< adb_result_t, std::vector< adb_result_t >, adb_result_key_lt> points;
  typename std::priority_queue< adb_result_t, std::vector< adb_result_t >, T> queue;
  typename std::map< adb_result_t, std::priority_queue< adb_result_t, std::vector< adb_result_t >, T > *, adb_result_key_lt>::iterator it;

  unsigned int size = 0;
  for(it = queues->begin(); it != queues->end(); it++) {
    unsigned int n = ((*it).second)->size();
    std::vector<adb_result_t> v;
    adb_result_t r;
    double dist = 0;
    for(unsigned int k = 0; k < n; k++) {
      r = ((*it).second)->top();
      dist += r.dist;
      v.push_back(r);
      ((*it).second)->pop();
    }
    points[r] = v;
    dist /= n;
    size += n;
    r.dist = dist;
    /* I will burn in hell */
    r.ipos = n;
    queue.push(r);
    if(queue.size() > trackNN) {
      size -= queue.top().ipos;
      queue.pop();
    }
  }

  adb_query_results_t *r = (adb_query_results_t *) malloc(sizeof(adb_query_results_t));
  adb_result_t *rs = (adb_result_t *) calloc(size, sizeof(adb_result_t));
  r->nresults = size;
  r->results = rs;
  
  unsigned int k = 0;
  while(queue.size() > 0) {
    std::vector<adb_result_t> v = points[queue.top()];
    queue.pop();
    while(v.size() > 0) {
      rs[k++] = v.back();
      v.pop_back();
    }
  }
  return r;
}