view sample.cpp @ 400:8c7453fb5bd9 api-inversion

Invert audioDB::power_flag / audiodb_power() Here the exciting discovery is that the mmap(), memcpy(), munmap() sequence is in fact not safe. In principle an msync() call should be inserted before unmapping for in-core changes to mmap()ed files to be flushed to disk. In this case we work around the problem entirely, by not mmap()ing anything and doing everything with file descriptors. Amusingly, that's probably not desperately safe either, this time because we have to move the file descriptor position (which is also a shared resource). dup() doesn't save us, as the duplicate file descriptor shares a file position. This applies also to the filling of data_buffer in the query loop, and in fact basically any call to lseek(), which is why I'm not fixing it now. Solution: if you have multiple threads all acting at once on a single database, do one audiodb_open() per thread, for now at least.
author mas01cr
date Thu, 27 Nov 2008 16:22:52 +0000
parents 2d5c3f8e8c22
children 0c1c8726a79b
line wrap: on
line source
#include "audioDB.h"

#include <gsl/gsl_sf.h>
#include <gsl/gsl_rng.h>

static
double yfun(double d) {
  return gsl_sf_log(d) - gsl_sf_psi(d);
}

static
double yinv(double y) {
  double a = 1.0e-5;
  double b = 1000.0;

  double ay = yfun(a);
  double by = yfun(b);

  double c = 0;
  double cy;

  /* FIXME: simple binary search; there's probably some clever solver
     in gsl somewhere which is less sucky. */
  while ((b - a) > 1.0e-5) {
    c = (a + b) / 2;
    cy = yfun(c);
    if (cy > y) {
      a = c;
      ay = cy;
    } else {
      b = c;
      by = cy;
    }
  }

  return c;
}

unsigned audioDB::random_track(unsigned *propTable, unsigned total) {
  /* FIXME: make this O(1) by using the alias-rejection method, or
     some other sensible method of sampling from a discrete
     distribution. */
  double thing = gsl_rng_uniform(rng);
  unsigned sofar = 0;
  for (unsigned int i = 0; i < dbH->numFiles; i++) {
    sofar += propTable[i];
    if (thing < ((double) sofar / (double) total)) {
      return i;
    }
  }
  error("fell through in random_track()");

  /* FIXME: decorate error's declaration so that this isn't necessary */
  return 0;
}

void audioDB::sample(const char *dbName) {
  initTables(dbName, 0);
  if(dbH->flags & O2_FLAG_LARGE_ADB){
    error("error: sample not yet supported for LARGE_ADB");
  }
    
  // build track offset table (FIXME: cut'n'pasted from query.cpp)
  off_t *trackOffsetTable = new off_t[dbH->numFiles];
  unsigned cumTrack=0;
  for(unsigned int k = 0; k < dbH->numFiles; k++){
    trackOffsetTable[k] = cumTrack;
    cumTrack += trackTable[k] * dbH->dim;
  }

  unsigned *propTable = new unsigned[dbH->numFiles];
  unsigned total = 0;
  unsigned count = 0;

  for (unsigned int i = 0; i < dbH->numFiles; i++) {
    /* what kind of a stupid language doesn't have binary max(), let
       alone nary? */
    unsigned int prop = trackTable[i] - sequenceLength + 1;
    prop = prop > 0 ? prop : 0;
    if (prop > 0) 
      count++;
    propTable[i] = prop;
    total += prop;
  }

  if (total == 0) {
    error("no sequences of this sequence length in the database", dbName);
  }

  unsigned int vlen = dbH->dim * sequenceLength;
  double *v1 = new double[vlen];
  double *v2 = new double[vlen];
  double v1norm, v2norm, v1v2;

  double sumdist = 0;
  double sumlogdist = 0;

  for (unsigned int i = 0; i < nsamples;) {
    unsigned track1 = random_track(propTable, total);
    unsigned track2 = random_track(propTable, total);

    if(track1 == track2)
      continue;

    unsigned i1 = gsl_rng_uniform_int(rng, propTable[track1]);
    unsigned i2 = gsl_rng_uniform_int(rng, propTable[track2]);

    VERB_LOG(1, "%d %d, %d %d | ", track1, i1, track2, i2);

    /* FIXME: this seeking, reading and distance calculation should
       share more code with the query loop */
    if(lseek(dbfid, dbH->dataOffset + trackOffsetTable[track1] * sizeof(double) + i1 * dbH->dim * sizeof(double), SEEK_SET) == (off_t) -1) {
      error("seek failure", "", "lseek");
    }
    CHECKED_READ(dbfid, v1, dbH->dim * sequenceLength * sizeof(double));

    if(lseek(dbfid, dbH->dataOffset + trackOffsetTable[track2] * sizeof(double) + i2 * dbH->dim * sizeof(double), SEEK_SET) == (off_t) -1) {
      error("seek failure", "", "lseek");
    }
    CHECKED_READ(dbfid, v2, dbH->dim * sequenceLength * sizeof(double));

    v1norm = 0;
    v2norm = 0;
    v1v2 = 0;

    for (unsigned int j = 0; j < vlen; j++) {
      v1norm += v1[j]*v1[j];
      v2norm += v2[j]*v2[j];
      v1v2 += v1[j]*v2[j];
    }

    /* FIXME: we must deal with infinities better than this; there
       could be all sorts of NaNs from arbitrary features.  Best
       include power thresholds or something... */
    if(isfinite(v1norm) && isfinite(v2norm) && isfinite(v1v2)) {

      VERB_LOG(1, "%f %f %f | ", v1norm, v2norm, v1v2);
      /* assume normalizedDistance == true for now */
      /* FIXME: not convinced that the statistics we calculated in
	 TASLP paper are technically valid for normalizedDistance */

      double dist = 2 - 2 * v1v2 / sqrt(v1norm * v2norm);
      // double dist = v1norm + v2norm - 2*v1v2;
      
      VERB_LOG(1, "%f %f\n", dist, log(dist));
      sumdist += dist;
      sumlogdist += log(dist);
      i++;
    } else {
      VERB_LOG(1, "infinity/NaN found: %f %f %f\n", v1norm, v2norm, v1v2);
    }
  }

  /* FIXME: the mean isn't really what we should be reporting here */
  unsigned meanN = total / count;

  double sigma2 = sumdist / (sequenceLength * dbH->dim * nsamples);
  double d = 2 * yinv(log(sumdist/nsamples) - sumlogdist/nsamples);

  std::cout << "Summary statistics" << std::endl;
  std::cout << "number of samples: " << nsamples << std::endl;
  std::cout << "sum of distances (S): " << sumdist << std::endl;
  std::cout << "sum of log distances (L): " << sumlogdist << std::endl;

  /* FIXME: we'll also want some more summary statistics based on
     propTable, for the minimum-of-X estimate */
  std::cout << "mean number of applicable sequences (N): " << meanN << std::endl;
  std::cout << std::endl;
  std::cout << "Estimated parameters" << std::endl;
  std::cout << "sigma^2: " << sigma2 << "; ";
  std::cout << "Msigma^2: " << sumdist / nsamples << std::endl;
  std::cout << "d: " << d << std::endl;

  double logw = (2 / d) * gsl_sf_log(-gsl_sf_log(0.99));
  double logxthresh = gsl_sf_log(sumdist / nsamples) + logw
    - (2 / d) * gsl_sf_log(meanN)
    - gsl_sf_log(d/2)
    - (2 / d) * gsl_sf_log(2 / d)
    + (2 / d) * gsl_sf_lngamma(d / 2);

  std::cout << "track xthresh: " << exp(logxthresh) << std::endl;

  delete[] propTable;
  delete[] v1;
  delete[] v2;
}