Mercurial > hg > audiodb
view query.cpp @ 217:685eb707b660 refactoring
set_up_db() analogue to set_up_query()
author | mas01cr |
---|---|
date | Tue, 04 Dec 2007 12:47:49 +0000 |
parents | cd3dced4f534 |
children | 016303fc3e1b |
line wrap: on
line source
#include "audioDB.h" bool audioDB::powers_acceptable(double p1, double p2) { if (use_absolute_threshold) { if ((p1 < absolute_threshold) || (p2 < absolute_threshold)) { return false; } } if (use_relative_threshold) { if (fabs(p1-p2) > fabs(relative_threshold)) { return false; } } return true; } void audioDB::query(const char* dbName, const char* inFile, adb__queryResponse *adbQueryResponse) { switch(queryType) { case O2_SEQUENCE_QUERY: if(radius==0) trackSequenceQueryNN(dbName, inFile, adbQueryResponse); else trackSequenceQueryRad(dbName, inFile, adbQueryResponse); break; default: error("unrecognized queryType in query()"); } } // return ordinal position of key in keyTable unsigned audioDB::getKeyPos(char* key){ for(unsigned k=0; k<dbH->numFiles; k++) if(strncmp(fileTable + k*O2_FILETABLESIZE, key, strlen(key))==0) return k; error("Key not found",key); return O2_ERR_KEYNOTFOUND; } // This is a common pattern in sequence queries: what we are doing is // taking a window of length seqlen over a buffer of length length, // and placing the sum of the elements in that window in the first // element of the window: thus replacing all but the last seqlen // elements in the buffer with the corresponding windowed sum. void audioDB::sequence_sum(double *buffer, int length, int seqlen) { double tmp1, tmp2, *ps; int j, w; tmp1 = *buffer; j = 1; w = seqlen - 1; while(w--) { *buffer += buffer[j++]; } ps = buffer + 1; w = length - seqlen; // +1 - 1 while(w--) { tmp2 = *ps; *ps = *(ps - 1) - tmp1 + *(ps + seqlen - 1); tmp1 = tmp2; ps++; } } // In contrast to sequence_sum() above, sequence_sqrt() and // sequence_average() below are simple mappers across the sequence. void audioDB::sequence_sqrt(double *buffer, int length, int seqlen) { int w = length - seqlen + 1; while(w--) { *buffer = sqrt(*buffer); buffer++; } } void audioDB::sequence_average(double *buffer, int length, int seqlen) { int w = length - seqlen + 1; while(w--) { *buffer /= seqlen; buffer++; } } void audioDB::initialize_arrays(int track, unsigned int numVectors, double *query, double *data_buffer, double **D, double **DD) { unsigned int j, k, l, w; double *dp, *qp, *sp; const unsigned HOP_SIZE = sequenceHop; const unsigned wL = sequenceLength; for(j = 0; j < numVectors; j++) { // Sum products matrix D[j] = new double[trackTable[track]]; assert(D[j]); // Matched filter matrix DD[j]=new double[trackTable[track]]; assert(DD[j]); } // Dot product for(j = 0; j < numVectors; j++) for(k = 0; k < trackTable[track]; k++){ qp = query + j * dbH->dim; sp = data_buffer + k * dbH->dim; DD[j][k] = 0.0; // Initialize matched filter array dp = &D[j][k]; // point to correlation cell j,k *dp = 0.0; // initialize correlation cell l = dbH->dim; // size of vectors while(l--) *dp += *qp++ * *sp++; } // Matched Filter // HOP SIZE == 1 double* spd; if(HOP_SIZE == 1) { // HOP_SIZE = shingleHop for(w = 0; w < wL; w++) { for(j = 0; j < numVectors - w; j++) { sp = DD[j]; spd = D[j+w] + w; k = trackTable[track] - w; while(k--) *sp++ += *spd++; } } } else { // HOP_SIZE != 1 for(w = 0; w < wL; w++) { for(j = 0; j < numVectors - w; j += HOP_SIZE) { sp = DD[j]; spd = D[j+w]+w; for(k = 0; k < trackTable[track] - w; k += HOP_SIZE) { *sp += *spd; sp += HOP_SIZE; spd += HOP_SIZE; } } } } } void audioDB::delete_arrays(int track, unsigned int numVectors, double **D, double **DD) { if(D != NULL) { for(unsigned int j = 0; j < numVectors; j++) { delete[] D[j]; } } if(DD != NULL) { for(unsigned int j = 0; j < numVectors; j++) { delete[] DD[j]; } } } void audioDB::read_data(int track, double **data_buffer_p, size_t *data_buffer_size_p) { if (trackTable[track] * sizeof(double) * dbH->dim > *data_buffer_size_p) { if(*data_buffer_p) { free(*data_buffer_p); } { *data_buffer_size_p = trackTable[track] * sizeof(double) * dbH->dim; void *tmp = malloc(*data_buffer_size_p); if (tmp == NULL) { error("error allocating data buffer"); } *data_buffer_p = (double *) tmp; } } read(dbfid, *data_buffer_p, trackTable[track] * sizeof(double) * dbH->dim); } void audioDB::set_up_query(double **qp, double **qnp, double **qpp, unsigned *nvp) { *nvp = (statbuf.st_size - sizeof(int)) / (dbH->dim * sizeof(double)); if(!(dbH->flags & O2_FLAG_L2NORM)) { error("Database must be L2 normed for sequence query","use -L2NORM"); } if(*nvp < sequenceLength) { error("Query shorter than requested sequence length", "maybe use -l"); } if(verbosity>1) { std::cerr << "performing norms ... "; std::cerr.flush(); } *qp = new double[*nvp * dbH->dim]; memcpy(*qp, indata+sizeof(int), *nvp * dbH->dim * sizeof(double)); *qnp = new double[*nvp]; unitNorm(*qp, dbH->dim, *nvp, *qnp); sequence_sum(*qnp, *nvp, sequenceLength); sequence_sqrt(*qnp, *nvp, sequenceLength); if (usingPower) { *qpp = new double[*nvp]; if (lseek(powerfd, sizeof(int), SEEK_SET) == (off_t) -1) { error("error seeking to data", powerFileName, "lseek"); } int count = read(powerfd, *qpp, *nvp * sizeof(double)); if (count == -1) { error("error reading data", powerFileName, "read"); } if ((unsigned) count != *nvp * sizeof(double)) { error("short read", powerFileName); } sequence_sum(*qpp, *nvp, sequenceLength); sequence_average(*qpp, *nvp, sequenceLength); } } void audioDB::set_up_db(double **snp, double **spp, unsigned int *dvp) { *dvp = dbH->length / (dbH->dim * sizeof(double)); *snp = new double[*dvp]; double *snpp = *snp, *sppp = 0; memcpy(*snp, l2normTable, *dvp * sizeof(double)); if (usingPower) { if (!(dbH->flags & O2_FLAG_POWER)) { error("database not power-enabled", dbName); } *spp = new double[*dvp]; sppp = *spp; memcpy(*spp, powerTable, *dvp * sizeof(double)); } for(unsigned int i = 0; i < dbH->numFiles; i++){ if(trackTable[i] >= sequenceLength) { sequence_sum(snpp, trackTable[i], sequenceLength); sequence_sqrt(snpp, trackTable[i], sequenceLength); if (usingPower) { sequence_sum(sppp, trackTable[i], sequenceLength); sequence_average(sppp, trackTable[i], sequenceLength); } } snpp += trackTable[i]; if (usingPower) { sppp += trackTable[i]; } } } void audioDB::trackSequenceQueryNN(const char* dbName, const char* inFile, adb__queryResponse *adbQueryResponse){ initTables(dbName, inFile); unsigned int numVectors; double *query, *query_data; double *qNorm, *qnPtr, *qPower = 0, *qpPtr = 0; set_up_query(&query, &qNorm, &qPower, &numVectors); query_data = query; qpPtr = qPower; qnPtr = qNorm; unsigned int dbVectors; double *sNorm, *snPtr, *sPower = 0, *spPtr = 0; set_up_db(&sNorm, &sPower, &dbVectors); spPtr = sPower; snPtr = sNorm; if(verbosity>1) { std::cerr << "matching tracks..." << std::endl; } assert(pointNN>0 && pointNN<=O2_MAXNN); assert(trackNN>0 && trackNN<=O2_MAXNN); // Make temporary dynamic memory for results double trackDistances[trackNN]; unsigned trackIDs[trackNN]; unsigned trackQIndexes[trackNN]; unsigned trackSIndexes[trackNN]; double distances[pointNN]; unsigned qIndexes[pointNN]; unsigned sIndexes[pointNN]; unsigned j,k,l,m,n,track,trackOffset=0, HOP_SIZE=sequenceHop, wL=sequenceLength; double thisDist; for(k=0; k<pointNN; k++){ distances[k]=1.0e6; qIndexes[k]=~0; sIndexes[k]=~0; } for(k=0; k<trackNN; k++){ trackDistances[k]=1.0e6; trackQIndexes[k]=~0; trackSIndexes[k]=~0; trackIDs[k]=~0; } // Timestamp and durations processing double meanQdur = 0; double *timesdata = 0; double *querydurs = 0; double *meanDBdur = 0; if(usingTimes && !(dbH->flags & O2_FLAG_TIMES)){ std::cerr << "warning: ignoring query timestamps for non-timestamped database" << std::endl; usingTimes=0; } else if(!usingTimes && (dbH->flags & O2_FLAG_TIMES)) std::cerr << "warning: no timestamps given for query. Ignoring database timestamps." << std::endl; else if(usingTimes && (dbH->flags & O2_FLAG_TIMES)){ timesdata = new double[2*numVectors]; querydurs = new double[numVectors]; insertTimeStamps(numVectors, timesFile, timesdata); // Calculate durations of points for(k=0; k<numVectors-1; k++) { querydurs[k] = timesdata[2*k+1] - timesdata[2*k]; meanQdur += querydurs[k]; } meanQdur/=k; if(verbosity>1) { std::cerr << "mean query file duration: " << meanQdur << std::endl; } meanDBdur = new double[dbH->numFiles]; assert(meanDBdur); for(k=0; k<dbH->numFiles; k++){ meanDBdur[k]=0.0; for(j=0; j<trackTable[k]-1 ; j++) { meanDBdur[k]+=timesTable[2*j+1]-timesTable[2*j]; } meanDBdur[k]/=j; } } if(usingQueryPoint) if(queryPoint>numVectors || queryPoint>numVectors-wL+1) error("queryPoint > numVectors-wL+1 in query"); else{ if(verbosity>1) { std::cerr << "query point: " << queryPoint << std::endl; std::cerr.flush(); } query = query + queryPoint * dbH->dim; qnPtr = qnPtr + queryPoint; if (usingPower) { qpPtr = qpPtr + queryPoint; } numVectors=wL; } double ** D = 0; // Differences query and target double ** DD = 0; // Matched filter distance D = new double*[numVectors]; assert(D); DD = new double*[numVectors]; assert(DD); gettimeofday(&tv1, NULL); unsigned processedTracks = 0; unsigned successfulTracks=0; // build track offset table off_t *trackOffsetTable = new off_t[dbH->numFiles]; unsigned cumTrack=0; off_t trackIndexOffset; for(k=0; k<dbH->numFiles;k++){ trackOffsetTable[k]=cumTrack; cumTrack+=trackTable[k]*dbH->dim; } char nextKey [MAXSTR]; // chi^2 statistics double sampleCount = 0; double sampleSum = 0; double logSampleSum = 0; double minSample = 1e9; double maxSample = 0; // Track loop size_t data_buffer_size = 0; double *data_buffer = 0; lseek(dbfid, dbH->dataOffset, SEEK_SET); for(processedTracks=0, track=0 ; processedTracks < dbH->numFiles ; track++, processedTracks++) { trackOffset = trackOffsetTable[track]; // numDoubles offset // get trackID from file if using a control file if(trackFile) { trackFile->getline(nextKey,MAXSTR); if(!trackFile->eof()) { track = getKeyPos(nextKey); trackOffset = trackOffsetTable[track]; lseek(dbfid, dbH->dataOffset + trackOffset * sizeof(double), SEEK_SET); } else { break; } } trackIndexOffset=trackOffset/dbH->dim; // numVectors offset if(sequenceLength<=trackTable[track]){ // test for short sequences if(verbosity>7) { std::cerr << track << "." << trackIndexOffset << "." << trackTable[track] << " | ";std::cerr.flush(); } read_data(track, &data_buffer, &data_buffer_size); initialize_arrays(track, numVectors, query, data_buffer, D, DD); if(verbosity>3 && usingTimes) { std::cerr << "meanQdur=" << meanQdur << " meanDBdur=" << meanDBdur[track] << std::endl; std::cerr.flush(); } if(!usingTimes || (usingTimes && fabs(meanDBdur[track]-meanQdur)<meanQdur*timesTol)){ if(verbosity>3 && usingTimes) { std::cerr << "within duration tolerance." << std::endl; std::cerr.flush(); } // Search for minimum distance by shingles (concatenated vectors) for(j=0;j<=numVectors-wL;j+=HOP_SIZE) for(k=0;k<=trackTable[track]-wL;k+=HOP_SIZE){ thisDist=2-(2/(qnPtr[j]*sNorm[trackIndexOffset+k]))*DD[j][k]; if(verbosity>9) { std::cerr << thisDist << " " << qnPtr[j] << " " << sNorm[trackIndexOffset+k] << std::endl; } // Gather chi^2 statistics if(thisDist<minSample) minSample=thisDist; else if(thisDist>maxSample) maxSample=thisDist; if(thisDist>1e-9){ sampleCount++; sampleSum+=thisDist; logSampleSum+=log(thisDist); } // diffL2 = fabs(qnPtr[j] - sNorm[trackIndexOffset+k]); // Power test if (usingPower) { if (!(powers_acceptable(qpPtr[j], sPower[trackIndexOffset + k]))) { thisDist = 1000000.0; } } // k-NN match algorithm m=pointNN; while(m--){ if(thisDist<=distances[m]) if(m==0 || thisDist>=distances[m-1]){ // Shuffle distances up the list for(l=pointNN-1; l>m; l--){ distances[l]=distances[l-1]; qIndexes[l]=qIndexes[l-1]; sIndexes[l]=sIndexes[l-1]; } distances[m]=thisDist; if(usingQueryPoint) qIndexes[m]=queryPoint; else qIndexes[m]=j; sIndexes[m]=k; break; } } } // Calculate the mean of the N-Best matches thisDist=0.0; for(m=0; m<pointNN; m++) { if (distances[m] == 1000000.0) break; thisDist+=distances[m]; } thisDist/=m; // Let's see the distances then... if(verbosity>3) { std::cerr << fileTable+track*O2_FILETABLESIZE << " " << thisDist << std::endl; } // All the track stuff goes here n=trackNN; while(n--){ if(thisDist<=trackDistances[n]){ if((n==0 || thisDist>=trackDistances[n-1])){ // Copy all values above up the queue for( l=trackNN-1 ; l > n ; l--){ trackDistances[l]=trackDistances[l-1]; trackQIndexes[l]=trackQIndexes[l-1]; trackSIndexes[l]=trackSIndexes[l-1]; trackIDs[l]=trackIDs[l-1]; } trackDistances[n]=thisDist; trackQIndexes[n]=qIndexes[0]; trackSIndexes[n]=sIndexes[0]; successfulTracks++; trackIDs[n]=track; break; } } else break; } } // Duration match delete_arrays(track, numVectors, D, DD); } // per-track reset array values for(unsigned k=0; k<pointNN; k++){ distances[k]=1.0e6; qIndexes[k]=~0; sIndexes[k]=~0; } } free(data_buffer); gettimeofday(&tv2,NULL); if(verbosity>1) { std::cerr << std::endl << "processed tracks :" << processedTracks << " matched tracks: " << successfulTracks << " elapsed time:" << ( tv2.tv_sec*1000 + tv2.tv_usec/1000 ) - ( tv1.tv_sec*1000+tv1.tv_usec/1000 ) << " msec" << std::endl; std::cerr << "sampleCount: " << sampleCount << " sampleSum: " << sampleSum << " logSampleSum: " << logSampleSum << " minSample: " << minSample << " maxSample: " << maxSample << std::endl; } if(adbQueryResponse==0){ if(verbosity>1) { std::cerr<<std::endl; } // Output answer // Loop over nearest neighbours for(k=0; k < std::min(trackNN,successfulTracks); k++) std::cout << fileTable+trackIDs[k]*O2_FILETABLESIZE << " " << trackDistances[k] << " " << trackQIndexes[k] << " " << trackSIndexes[k] << std::endl; } else{ // Process Web Services Query int listLen = std::min(trackNN, processedTracks); adbQueryResponse->result.__sizeRlist=listLen; adbQueryResponse->result.__sizeDist=listLen; adbQueryResponse->result.__sizeQpos=listLen; adbQueryResponse->result.__sizeSpos=listLen; adbQueryResponse->result.Rlist= new char*[listLen]; adbQueryResponse->result.Dist = new double[listLen]; adbQueryResponse->result.Qpos = new unsigned int[listLen]; adbQueryResponse->result.Spos = new unsigned int[listLen]; for(k=0; k<(unsigned)adbQueryResponse->result.__sizeRlist; k++){ adbQueryResponse->result.Rlist[k]=new char[O2_MAXFILESTR]; adbQueryResponse->result.Dist[k]=trackDistances[k]; adbQueryResponse->result.Qpos[k]=trackQIndexes[k]; adbQueryResponse->result.Spos[k]=trackSIndexes[k]; sprintf(adbQueryResponse->result.Rlist[k], "%s", fileTable+trackIDs[k]*O2_FILETABLESIZE); } } // Clean up if(trackOffsetTable) delete[] trackOffsetTable; if(query_data) delete[] query_data; if(qNorm) delete[] qNorm; if(sNorm) delete[] sNorm; if(qPower) delete[] qPower; if(sPower) delete[] sPower; if(D) delete[] D; if(DD) delete[] DD; if(timesdata) delete[] timesdata; if(querydurs) delete[] querydurs; if(meanDBdur) delete[] meanDBdur; } void audioDB::trackSequenceQueryRad(const char* dbName, const char* inFile, adb__queryResponse *adbQueryResponse){ initTables(dbName, inFile); unsigned int numVectors; double *query, *query_data; double *qNorm, *qnPtr, *qPower = 0, *qpPtr = 0; set_up_query(&query, &qNorm, &qPower, &numVectors); query_data = query; qpPtr = qPower; qnPtr = qNorm; unsigned int dbVectors; double *sNorm, *snPtr, *sPower = 0, *spPtr = 0; set_up_db(&sNorm, &sPower, &dbVectors); spPtr = sPower; snPtr = sNorm; if(verbosity>1) { std::cerr << "matching tracks..." << std::endl; } assert(pointNN>0 && pointNN<=O2_MAXNN); assert(trackNN>0 && trackNN<=O2_MAXNN); // Make temporary dynamic memory for results double trackDistances[trackNN]; unsigned trackIDs[trackNN]; unsigned trackQIndexes[trackNN]; unsigned trackSIndexes[trackNN]; double distances[pointNN]; unsigned qIndexes[pointNN]; unsigned sIndexes[pointNN]; unsigned j,k,l,n,track,trackOffset=0; unsigned const HOP_SIZE=sequenceHop; unsigned const wL=sequenceLength; double thisDist; for(k=0; k<pointNN; k++){ distances[k]=0.0; qIndexes[k]=~0; sIndexes[k]=~0; } for(k=0; k<trackNN; k++){ trackDistances[k]=0.0; trackQIndexes[k]=~0; trackSIndexes[k]=~0; trackIDs[k]=~0; } // Timestamp and durations processing double meanQdur = 0; double *timesdata = 0; double *querydurs = 0; double *meanDBdur = 0; if(usingTimes && !(dbH->flags & O2_FLAG_TIMES)){ std::cerr << "warning: ignoring query timestamps for non-timestamped database" << std::endl; usingTimes=0; } else if(!usingTimes && (dbH->flags & O2_FLAG_TIMES)) std::cerr << "warning: no timestamps given for query. Ignoring database timestamps." << std::endl; else if(usingTimes && (dbH->flags & O2_FLAG_TIMES)){ timesdata = new double[2*numVectors]; querydurs = new double[numVectors]; insertTimeStamps(numVectors, timesFile, timesdata); // Calculate durations of points for(k=0; k<numVectors-1; k++){ querydurs[k] = timesdata[2*k+1] - timesdata[2*k]; meanQdur += querydurs[k]; } meanQdur/=k; if(verbosity>1) { std::cerr << "mean query file duration: " << meanQdur << std::endl; } meanDBdur = new double[dbH->numFiles]; assert(meanDBdur); for(k=0; k<dbH->numFiles; k++){ meanDBdur[k]=0.0; for(j=0; j<trackTable[k]-1 ; j++) { meanDBdur[k]+=timesTable[2*j+1]-timesTable[2*j]; } meanDBdur[k]/=j; } } if(usingQueryPoint) if(queryPoint>numVectors || queryPoint>numVectors-wL+1) error("queryPoint > numVectors-wL+1 in query"); else{ if(verbosity>1) { std::cerr << "query point: " << queryPoint << std::endl; std::cerr.flush(); } query = query + queryPoint*dbH->dim; qnPtr = qnPtr + queryPoint; if (usingPower) { qpPtr = qpPtr + queryPoint; } numVectors=wL; } double ** D = 0; // Differences query and target double ** DD = 0; // Matched filter distance D = new double*[numVectors]; assert(D); DD = new double*[numVectors]; assert(DD); gettimeofday(&tv1, NULL); unsigned processedTracks = 0; unsigned successfulTracks=0; // build track offset table off_t *trackOffsetTable = new off_t[dbH->numFiles]; unsigned cumTrack=0; off_t trackIndexOffset; for(k=0; k<dbH->numFiles;k++){ trackOffsetTable[k]=cumTrack; cumTrack+=trackTable[k]*dbH->dim; } char nextKey [MAXSTR]; // chi^2 statistics double sampleCount = 0; double sampleSum = 0; double logSampleSum = 0; double minSample = 1e9; double maxSample = 0; // Track loop size_t data_buffer_size = 0; double *data_buffer = 0; lseek(dbfid, dbH->dataOffset, SEEK_SET); for(processedTracks=0, track=0 ; processedTracks < dbH->numFiles ; track++, processedTracks++){ trackOffset = trackOffsetTable[track]; // numDoubles offset // get trackID from file if using a control file if(trackFile) { trackFile->getline(nextKey,MAXSTR); if(!trackFile->eof()) { track = getKeyPos(nextKey); trackOffset = trackOffsetTable[track]; lseek(dbfid, dbH->dataOffset + trackOffset * sizeof(double), SEEK_SET); } else { break; } } trackIndexOffset=trackOffset/dbH->dim; // numVectors offset if(sequenceLength<=trackTable[track]){ // test for short sequences if(verbosity>7) { std::cerr << track << "." << trackIndexOffset << "." << trackTable[track] << " | ";std::cerr.flush(); } read_data(track, &data_buffer, &data_buffer_size); initialize_arrays(track, numVectors, query, data_buffer, D, DD); if(verbosity>3 && usingTimes) { std::cerr << "meanQdur=" << meanQdur << " meanDBdur=" << meanDBdur[track] << std::endl; std::cerr.flush(); } if(!usingTimes || (usingTimes && fabs(meanDBdur[track]-meanQdur)<meanQdur*timesTol)){ if(verbosity>3 && usingTimes) { std::cerr << "within duration tolerance." << std::endl; std::cerr.flush(); } // Search for minimum distance by shingles (concatenated vectors) for(j=0;j<=numVectors-wL;j+=HOP_SIZE) for(k=0;k<=trackTable[track]-wL;k+=HOP_SIZE){ thisDist=2-(2/(qnPtr[j]*sNorm[trackIndexOffset+k]))*DD[j][k]; if(verbosity>9) { std::cerr << thisDist << " " << qnPtr[j] << " " << sNorm[trackIndexOffset+k] << std::endl; } // Gather chi^2 statistics if(thisDist<minSample) minSample=thisDist; else if(thisDist>maxSample) maxSample=thisDist; if(thisDist>1e-9){ sampleCount++; sampleSum+=thisDist; logSampleSum+=log(thisDist); } // diffL2 = fabs(qnPtr[j] - sNorm[trackIndexOffset+k]); // Power test if (usingPower) { if (!(powers_acceptable(qpPtr[j], sPower[trackIndexOffset + k]))) { thisDist = 1000000.0; } } if(thisDist>=0 && thisDist<=radius){ distances[0]++; // increment count break; // only need one track point per query point } } // How many points were below threshold ? thisDist=distances[0]; // Let's see the distances then... if(verbosity>3) { std::cerr << fileTable+track*O2_FILETABLESIZE << " " << thisDist << std::endl; } // All the track stuff goes here n=trackNN; while(n--){ if(thisDist>trackDistances[n]){ if((n==0 || thisDist<=trackDistances[n-1])){ // Copy all values above up the queue for( l=trackNN-1 ; l > n ; l--){ trackDistances[l]=trackDistances[l-1]; trackQIndexes[l]=trackQIndexes[l-1]; trackSIndexes[l]=trackSIndexes[l-1]; trackIDs[l]=trackIDs[l-1]; } trackDistances[n]=thisDist; trackQIndexes[n]=qIndexes[0]; trackSIndexes[n]=sIndexes[0]; successfulTracks++; trackIDs[n]=track; break; } } else break; } } // Duration match delete_arrays(track, numVectors, D, DD); } // per-track reset array values for(unsigned k=0; k<pointNN; k++){ distances[k]=0.0; qIndexes[k]=~0; sIndexes[k]=~0; } } free(data_buffer); gettimeofday(&tv2,NULL); if(verbosity>1) { std::cerr << std::endl << "processed tracks :" << processedTracks << " matched tracks: " << successfulTracks << " elapsed time:" << ( tv2.tv_sec*1000 + tv2.tv_usec/1000 ) - ( tv1.tv_sec*1000+tv1.tv_usec/1000 ) << " msec" << std::endl; std::cerr << "sampleCount: " << sampleCount << " sampleSum: " << sampleSum << " logSampleSum: " << logSampleSum << " minSample: " << minSample << " maxSample: " << maxSample << std::endl; } if(adbQueryResponse==0){ if(verbosity>1) { std::cerr<<std::endl; } // Output answer // Loop over nearest neighbours for(k=0; k < std::min(trackNN,successfulTracks); k++) std::cout << fileTable+trackIDs[k]*O2_FILETABLESIZE << " " << trackDistances[k] << std::endl; } else{ // Process Web Services Query int listLen = std::min(trackNN, processedTracks); adbQueryResponse->result.__sizeRlist=listLen; adbQueryResponse->result.__sizeDist=listLen; adbQueryResponse->result.__sizeQpos=listLen; adbQueryResponse->result.__sizeSpos=listLen; adbQueryResponse->result.Rlist= new char*[listLen]; adbQueryResponse->result.Dist = new double[listLen]; adbQueryResponse->result.Qpos = new unsigned int[listLen]; adbQueryResponse->result.Spos = new unsigned int[listLen]; for(k=0; k<(unsigned)adbQueryResponse->result.__sizeRlist; k++){ adbQueryResponse->result.Rlist[k]=new char[O2_MAXFILESTR]; adbQueryResponse->result.Dist[k]=trackDistances[k]; adbQueryResponse->result.Qpos[k]=trackQIndexes[k]; adbQueryResponse->result.Spos[k]=trackSIndexes[k]; sprintf(adbQueryResponse->result.Rlist[k], "%s", fileTable+trackIDs[k]*O2_FILETABLESIZE); } } // Clean up if(trackOffsetTable) delete[] trackOffsetTable; if(query_data) delete[] query_data; if(qNorm) delete[] qNorm; if(sNorm) delete[] sNorm; if(qPower) delete[] qPower; if(sPower) delete[] sPower; if(D) delete[] D; if(DD) delete[] DD; if(timesdata) delete[] timesdata; if(querydurs) delete[] querydurs; if(meanDBdur) delete[] meanDBdur; } // Unit norm block of features void audioDB::unitNorm(double* X, unsigned dim, unsigned n, double* qNorm){ unsigned d; double L2, *p; if(verbosity>2) { std::cerr << "norming " << n << " vectors...";std::cerr.flush(); } while(n--) { p = X; L2 = 0.0; d = dim; while(d--) { L2 += *p * *p; p++; } if(qNorm) { *qNorm++=L2; } X += dim; } if(verbosity>2) { std::cerr << "done..." << std::endl; } }