Mercurial > hg > audiodb
view sample.cpp @ 489:4cb6c611f812 api-inversion
Begin removing uses of audiodb_query()
audiodb_query() is actually an unsupportable interface. It requires
access to the filesystem, does not (and cannot) actually support whole
swathes of functionality, is only implementable using code that is no
longer part of the core of audioDB (reporter.h), is in the way of fixing
memory leaks in the SOAP server, and is horrible to use to boot.
So, begin converting the libtests uses of audiodb_query() to
audio_query_spec(). In the process, go through the test code and
remove useless comments, pointless variables, and commented-out bits
of shell scripts.
author | mas01cr |
---|---|
date | Sat, 10 Jan 2009 15:32:53 +0000 |
parents | 0c1c8726a79b |
children | e6dab5ed471c |
line wrap: on
line source
#include "audioDB.h" #include <gsl/gsl_sf.h> #include <gsl/gsl_rng.h> static double yfun(double d) { return gsl_sf_log(d) - gsl_sf_psi(d); } static double yinv(double y) { double a = 1.0e-5; double b = 1000.0; double ay = yfun(a); double by = yfun(b); double c = 0; double cy; /* FIXME: simple binary search; there's probably some clever solver in gsl somewhere which is less sucky. */ while ((b - a) > 1.0e-5) { c = (a + b) / 2; cy = yfun(c); if (cy > y) { a = c; ay = cy; } else { b = c; by = cy; } } return c; } unsigned audioDB::random_track(unsigned *propTable, unsigned total) { /* FIXME: make this O(1) by using the alias-rejection method, or some other sensible method of sampling from a discrete distribution. */ double thing = gsl_rng_uniform(rng); unsigned sofar = 0; for (unsigned int i = 0; i < dbH->numFiles; i++) { sofar += propTable[i]; if (thing < ((double) sofar / (double) total)) { return i; } } error("fell through in random_track()"); /* FIXME: decorate error's declaration so that this isn't necessary */ return 0; } void audioDB::sample(const char *dbName) { initTables(dbName, 0); if(dbH->flags & O2_FLAG_LARGE_ADB){ error("error: sample not yet supported for LARGE_ADB"); } off_t *trackOffsetTable = new off_t[dbH->numFiles]; unsigned cumTrack=0; for(unsigned int k = 0; k < dbH->numFiles; k++){ trackOffsetTable[k] = cumTrack; cumTrack += trackTable[k] * dbH->dim; } unsigned *propTable = new unsigned[dbH->numFiles]; unsigned total = 0; unsigned count = 0; for (unsigned int i = 0; i < dbH->numFiles; i++) { /* what kind of a stupid language doesn't have binary max(), let alone nary? */ unsigned int prop = trackTable[i] - sequenceLength + 1; prop = prop > 0 ? prop : 0; if (prop > 0) count++; propTable[i] = prop; total += prop; } if (total == 0) { error("no sequences of this sequence length in the database", dbName); } unsigned int vlen = dbH->dim * sequenceLength; double *v1 = new double[vlen]; double *v2 = new double[vlen]; double v1norm, v2norm, v1v2; double sumdist = 0; double sumlogdist = 0; for (unsigned int i = 0; i < nsamples;) { unsigned track1 = random_track(propTable, total); unsigned track2 = random_track(propTable, total); if(track1 == track2) continue; unsigned i1 = gsl_rng_uniform_int(rng, propTable[track1]); unsigned i2 = gsl_rng_uniform_int(rng, propTable[track2]); VERB_LOG(1, "%d %d, %d %d | ", track1, i1, track2, i2); /* FIXME: this seeking, reading and distance calculation should share more code with the query loop */ if(lseek(dbfid, dbH->dataOffset + trackOffsetTable[track1] * sizeof(double) + i1 * dbH->dim * sizeof(double), SEEK_SET) == (off_t) -1) { error("seek failure", "", "lseek"); } CHECKED_READ(dbfid, v1, dbH->dim * sequenceLength * sizeof(double)); if(lseek(dbfid, dbH->dataOffset + trackOffsetTable[track2] * sizeof(double) + i2 * dbH->dim * sizeof(double), SEEK_SET) == (off_t) -1) { error("seek failure", "", "lseek"); } CHECKED_READ(dbfid, v2, dbH->dim * sequenceLength * sizeof(double)); v1norm = 0; v2norm = 0; v1v2 = 0; for (unsigned int j = 0; j < vlen; j++) { v1norm += v1[j]*v1[j]; v2norm += v2[j]*v2[j]; v1v2 += v1[j]*v2[j]; } /* FIXME: we must deal with infinities better than this; there could be all sorts of NaNs from arbitrary features. Best include power thresholds or something... */ if(isfinite(v1norm) && isfinite(v2norm) && isfinite(v1v2)) { VERB_LOG(1, "%f %f %f | ", v1norm, v2norm, v1v2); /* assume normalizedDistance == true for now */ /* FIXME: not convinced that the statistics we calculated in TASLP paper are technically valid for normalizedDistance */ double dist = 2 - 2 * v1v2 / sqrt(v1norm * v2norm); // double dist = v1norm + v2norm - 2*v1v2; VERB_LOG(1, "%f %f\n", dist, log(dist)); sumdist += dist; sumlogdist += log(dist); i++; } else { VERB_LOG(1, "infinity/NaN found: %f %f %f\n", v1norm, v2norm, v1v2); } } /* FIXME: the mean isn't really what we should be reporting here */ unsigned meanN = total / count; double sigma2 = sumdist / (sequenceLength * dbH->dim * nsamples); double d = 2 * yinv(log(sumdist/nsamples) - sumlogdist/nsamples); std::cout << "Summary statistics" << std::endl; std::cout << "number of samples: " << nsamples << std::endl; std::cout << "sum of distances (S): " << sumdist << std::endl; std::cout << "sum of log distances (L): " << sumlogdist << std::endl; /* FIXME: we'll also want some more summary statistics based on propTable, for the minimum-of-X estimate */ std::cout << "mean number of applicable sequences (N): " << meanN << std::endl; std::cout << std::endl; std::cout << "Estimated parameters" << std::endl; std::cout << "sigma^2: " << sigma2 << "; "; std::cout << "Msigma^2: " << sumdist / nsamples << std::endl; std::cout << "d: " << d << std::endl; double logw = (2 / d) * gsl_sf_log(-gsl_sf_log(0.99)); double logxthresh = gsl_sf_log(sumdist / nsamples) + logw - (2 / d) * gsl_sf_log(meanN) - gsl_sf_log(d/2) - (2 / d) * gsl_sf_log(2 / d) + (2 / d) * gsl_sf_lngamma(d / 2); std::cout << "track xthresh: " << exp(logxthresh) << std::endl; delete[] propTable; delete[] v1; delete[] v2; }