Mercurial > hg > audiodb
view digamma.c @ 742:3e1137d12ecc multiprobeLSH
added digamma function
author | mas01mc |
---|---|
date | Mon, 04 Oct 2010 20:48:58 +0000 |
parents | |
children |
line wrap: on
line source
/************************************* An ANSI-C implementation of the digamma-function for real arguments based on the Chebyshev expansion proposed in appendix E of http://arXiv.org/abs/math.CA/0403344 . For other implementations see the GSL implementation for Psi(Digamma) in http://www.gnu.org/software/gsl/manual/gsl-ref_toc.html Richard J. Mathar, 2005-11-24 http://www.strw.leidenuniv.nl/~mathar/progs/digamma.c **************************************/ #include <math.h> #ifndef M_PIl /** The constant Pi in high precision */ #define M_PIl 3.1415926535897932384626433832795029L #endif #ifndef M_GAMMAl /** Euler's constant in high precision */ #define M_GAMMAl 0.5772156649015328606065120900824024L #endif #ifndef M_LN2l /** the natural logarithm of 2 in high precision */ #define M_LN2l 0.6931471805599453094172321214581766L #endif /** The digamma function in long double precision. * @param x the real value of the argument * @return the value of the digamma (psi) function at that point * @author Richard J. Mathar * @since 2005-11-24 */ long double digammal(long double x) { /* force into the interval 1..3 */ if( x < 0.0L ) return digammal(1.0L-x)+M_PIl/tanl(M_PIl*(1.0L-x)) ; /* reflection formula */ else if( x < 1.0L ) return digammal(1.0L+x)-1.0L/x ; else if ( x == 1.0L) return -M_GAMMAl ; else if ( x == 2.0L) return 1.0L-M_GAMMAl ; else if ( x == 3.0L) return 1.5L-M_GAMMAl ; else if ( x > 3.0L) /* duplication formula */ return 0.5L*(digammal(x/2.0L)+digammal((x+1.0L)/2.0L))+M_LN2l ; else { /* Just for your information, the following lines contain * the Maple source code to re-generate the table that is * eventually becoming the Kncoe[] array below * interface(prettyprint=0) : * Digits := 63 : * r := 0 : * * for l from 1 to 60 do * d := binomial(-1/2,l) : * r := r+d*(-1)^l*(Zeta(2*l+1) -1) ; * evalf(r) ; * print(%,evalf(1+Psi(1)-r)) ; *o d : * * for N from 1 to 28 do * r := 0 : * n := N-1 : * * for l from iquo(n+3,2) to 70 do * d := 0 : * for s from 0 to n+1 do * d := d+(-1)^s*binomial(n+1,s)*binomial((s-1)/2,l) : * od : * if 2*l-n > 1 then * r := r+d*(-1)^l*(Zeta(2*l-n) -1) : * fi : * od : * print(evalf((-1)^n*2*r)) ; *od : *quit : */ static long double Kncoe[] = { .30459198558715155634315638246624251L, .72037977439182833573548891941219706L, -.12454959243861367729528855995001087L, .27769457331927827002810119567456810e-1L, -.67762371439822456447373550186163070e-2L, .17238755142247705209823876688592170e-2L, -.44817699064252933515310345718960928e-3L, .11793660000155572716272710617753373e-3L, -.31253894280980134452125172274246963e-4L, .83173997012173283398932708991137488e-5L, -.22191427643780045431149221890172210e-5L, .59302266729329346291029599913617915e-6L, -.15863051191470655433559920279603632e-6L, .42459203983193603241777510648681429e-7L, -.11369129616951114238848106591780146e-7L, .304502217295931698401459168423403510e-8L, -.81568455080753152802915013641723686e-9L, .21852324749975455125936715817306383e-9L, -.58546491441689515680751900276454407e-10L, .15686348450871204869813586459513648e-10L, -.42029496273143231373796179302482033e-11L, .11261435719264907097227520956710754e-11L, -.30174353636860279765375177200637590e-12L, .80850955256389526647406571868193768e-13L, -.21663779809421233144009565199997351e-13L, .58047634271339391495076374966835526e-14L, -.15553767189204733561108869588173845e-14L, .41676108598040807753707828039353330e-15L, -.11167065064221317094734023242188463e-15L } ; register long double Tn_1 = 1.0L ; /* T_{n-1}(x), started at n=1 */ register long double Tn = x-2.0L ; /* T_{n}(x) , started at n=1 */ register long double resul = Kncoe[0] + Kncoe[1]*Tn ; register int n; x -= 2.0L ; for(n = 2 ; n < sizeof(Kncoe)/sizeof(long double) ;n++) { const long double Tn1 = 2.0L * x * Tn - Tn_1 ; /* Chebyshev recursion, Eq. 22.7.4 Abramowitz-Stegun */ resul += Kncoe[n]*Tn1 ; Tn_1 = Tn ; Tn = Tn1 ; } return resul ; } } /** The optional interface to CREASO's IDL is added if someone has defined * the cpp macro export_IDL_REF, which typically has been done by including the * files stdio.h and idl_export.h before this one here. */ #ifdef export_IDL_REF /** CALL_EXTERNAL interface. * dg = CALL_EXTERNAL('digamma.so',X) * @pararm argc the number of arguments. This is supposed to be 1 and not * checked further because it might have negative impact on performance. * @pararm argv the parameter list. The first element is the parameter x * supposed to be of type DOUBLE in IDL * @return the return value, again of IDL-type DOUBLE * @since 2007-01-16 * @author Richard J. Mathar */ double digammal_idl(int argc, void *argv[]) { long double x = *(double*)argv[0] ; return (double)digammal(x) ; } #endif /* export_IDL_REF */ #ifdef MAIN #include <stdlib.h> #include <stdio.h> int main(int argc, char **argv){ if (argc < 2){ fprintf(stderr, "Syntax: %s x\n", argv[0]); exit(1); } double x = atof(argv[1]); double y = digammal(x); printf("%g\n", y); return 0; } #endif /* MAIN */ #ifdef TEST /* an alternate implementation for test purposes, using formula 6.3.16 of Abramowitz/Stegun with the first n terms */ #include <stdio.h> long double digammalAlt(long double x, int n) { /* force into the interval 1..3 */ if( x < 0.0L ) return digammalAlt(1.0L-x,n)+M_PIl/tanl(M_PIl*(1.0L-x)) ; /* reflection formula */ else if( x < 1.0L ) return digammalAlt(1.0L+x,n)-1.0L/x ; else if ( x == 1.0L) return -M_GAMMAl ; else if ( x == 2.0L) return 1.0L-M_GAMMAl ; else if ( x == 3.0L) return 1.5L-M_GAMMAl ; else if ( x > 3.0L) return digammalAlt(x-1.0L,n)+1.0L/(x-1.0L) ; else { x -= 1.0L ; register long double resul = -M_GAMMAl ; for( ; n >= 1 ;n--) resul += x/(n*(n+x)) ; return resul ; } } int main(int argc, char *argv[]) { long double x; for(x=0.01 ; x < 5. ; x += 0.02) printf("%.2Lf %.30Lf %.30Lf %.30Lf\n",x, digammal(x), digammalAlt(x,100), digammalAlt(x,200) ) ; } #endif /* TEST */