Mercurial > hg > audiodb
view sample.cpp @ 634:37fc7411e1ef
Actually test for retrieve behaviour in sb-alien bindings
Motivated by Jamie's bug report that it doesn't in fact work at all on
32-bit platforms. (Ticket #32 in audioDB trac)
author | mas01cr |
---|---|
date | Tue, 29 Sep 2009 16:23:39 +0000 |
parents | e6dab5ed471c |
children | 536cfa209e7f |
line wrap: on
line source
#include "audioDB.h" #include <gsl/gsl_sf.h> #include <gsl/gsl_rng.h> static double yfun(double d) { return gsl_sf_log(d) - gsl_sf_psi(d); } static double yinv(double y) { double a = 1.0e-5; double b = 1000.0; double ay = yfun(a); double by = yfun(b); double c = 0; double cy; /* FIXME: simple binary search; there's probably some clever solver in gsl somewhere which is less sucky. */ while ((b - a) > 1.0e-5) { c = (a + b) / 2; cy = yfun(c); if (cy > y) { a = c; ay = cy; } else { b = c; by = cy; } } return c; } unsigned audioDB::random_track(unsigned *propTable, unsigned total) { /* FIXME: make this O(1) by using the alias-rejection method, or some other sensible method of sampling from a discrete distribution. */ double thing = gsl_rng_uniform(rng); unsigned sofar = 0; for (unsigned int i = 0; i < dbH->numFiles; i++) { sofar += propTable[i]; if (thing < ((double) sofar / (double) total)) { return i; } } error("fell through in random_track()"); } void audioDB::sample(const char *dbName) { initTables(dbName, 0); if(dbH->flags & O2_FLAG_LARGE_ADB){ error("error: sample not yet supported for LARGE_ADB"); } off_t *trackOffsetTable = new off_t[dbH->numFiles]; unsigned cumTrack=0; for(unsigned int k = 0; k < dbH->numFiles; k++){ trackOffsetTable[k] = cumTrack; cumTrack += trackTable[k] * dbH->dim; } unsigned *propTable = new unsigned[dbH->numFiles]; unsigned total = 0; unsigned count = 0; for (unsigned int i = 0; i < dbH->numFiles; i++) { /* what kind of a stupid language doesn't have binary max(), let alone nary? */ unsigned int prop = trackTable[i] - sequenceLength + 1; prop = prop > 0 ? prop : 0; if (prop > 0) count++; propTable[i] = prop; total += prop; } if (total == 0) { error("no sequences of this sequence length in the database", dbName); } unsigned int vlen = dbH->dim * sequenceLength; double *v1 = new double[vlen]; double *v2 = new double[vlen]; double v1norm, v2norm, v1v2; double sumdist = 0; double sumlogdist = 0; for (unsigned int i = 0; i < nsamples;) { unsigned track1 = random_track(propTable, total); unsigned track2 = random_track(propTable, total); if(track1 == track2) continue; unsigned i1 = gsl_rng_uniform_int(rng, propTable[track1]); unsigned i2 = gsl_rng_uniform_int(rng, propTable[track2]); VERB_LOG(1, "%d %d, %d %d | ", track1, i1, track2, i2); /* FIXME: this seeking, reading and distance calculation should share more code with the query loop */ if(lseek(dbfid, dbH->dataOffset + trackOffsetTable[track1] * sizeof(double) + i1 * dbH->dim * sizeof(double), SEEK_SET) == (off_t) -1) { error("seek failure", "", "lseek"); } CHECKED_READ(dbfid, v1, dbH->dim * sequenceLength * sizeof(double)); if(lseek(dbfid, dbH->dataOffset + trackOffsetTable[track2] * sizeof(double) + i2 * dbH->dim * sizeof(double), SEEK_SET) == (off_t) -1) { error("seek failure", "", "lseek"); } CHECKED_READ(dbfid, v2, dbH->dim * sequenceLength * sizeof(double)); v1norm = 0; v2norm = 0; v1v2 = 0; for (unsigned int j = 0; j < vlen; j++) { v1norm += v1[j]*v1[j]; v2norm += v2[j]*v2[j]; v1v2 += v1[j]*v2[j]; } /* FIXME: we must deal with infinities better than this; there could be all sorts of NaNs from arbitrary features. Best include power thresholds or something... */ if(isfinite(v1norm) && isfinite(v2norm) && isfinite(v1v2)) { VERB_LOG(1, "%f %f %f | ", v1norm, v2norm, v1v2); /* assume normalizedDistance == true for now */ /* FIXME: not convinced that the statistics we calculated in TASLP paper are technically valid for normalizedDistance */ double dist = 2 - 2 * v1v2 / sqrt(v1norm * v2norm); // double dist = v1norm + v2norm - 2*v1v2; VERB_LOG(1, "%f %f\n", dist, log(dist)); sumdist += dist; sumlogdist += log(dist); i++; } else { VERB_LOG(1, "infinity/NaN found: %f %f %f\n", v1norm, v2norm, v1v2); } } /* FIXME: the mean isn't really what we should be reporting here */ unsigned meanN = total / count; double sigma2 = sumdist / (sequenceLength * dbH->dim * nsamples); double d = 2 * yinv(log(sumdist/nsamples) - sumlogdist/nsamples); std::cout << "Summary statistics" << std::endl; std::cout << "number of samples: " << nsamples << std::endl; std::cout << "sum of distances (S): " << sumdist << std::endl; std::cout << "sum of log distances (L): " << sumlogdist << std::endl; /* FIXME: we'll also want some more summary statistics based on propTable, for the minimum-of-X estimate */ std::cout << "mean number of applicable sequences (N): " << meanN << std::endl; std::cout << std::endl; std::cout << "Estimated parameters" << std::endl; std::cout << "sigma^2: " << sigma2 << "; "; std::cout << "Msigma^2: " << sumdist / nsamples << std::endl; std::cout << "d: " << d << std::endl; double logw = (2 / d) * gsl_sf_log(-gsl_sf_log(0.99)); double logxthresh = gsl_sf_log(sumdist / nsamples) + logw - (2 / d) * gsl_sf_log(meanN) - gsl_sf_log(d/2) - (2 / d) * gsl_sf_log(2 / d) + (2 / d) * gsl_sf_lngamma(d / 2); std::cout << "track xthresh: " << exp(logxthresh) << std::endl; delete[] propTable; delete[] v1; delete[] v2; }