Mercurial > hg > audiodb
view audioDB.cpp @ 20:0519fc406b29
New major version, mostly tested: both sequence queries (-Q seq --pointnn N and -Q seq --radius R) now work, all reported distances are Euclidean.
author | mas01mc |
---|---|
date | Mon, 13 Aug 2007 23:25:16 +0000 |
parents | 999c9c216565 |
children | 95f1f4a42257 |
line wrap: on
line source
/* audioDB.cpp audioDB version 1.0 A feature vector database management system for content-based retrieval. Usage: audioDB [OPTIONS]... --full-help Print help, including hidden options, and exit -V, --version Print version and exit -H, --help print help on audioDB usage and exit. -v, --verbosity=detail level of detail of operational information. (default=`1') Database Setup: All database operations require a database argument. Database commands are UPPER CASE. Command options are lower case. -d, --database=filename database file required by Database commands. -N, --NEW make a new (initially empty) database. -S, --STATUS output database information to stdout. -D, --DUMP output all entries: index key size. -L, --L2NORM unit norm vectors and norm all future inserts. Database Insertion: The following commands insert feature files, with optional keys and timestamps. -I, --INSERT add feature vectors to an existing database. -U, --UPDATE replace inserted vectors associated with key with new input vectors. -f, --features=filename binary series of vectors file {int sz:ieee double[][sz]:eof}. -t, --times=filename list of time points (ascii) for feature vectors. -k, --key=identifier unique identifier associated with features. -B, --BATCHINSERT add feature vectors named in a --featureList file (with optional keys in a --keyList file) to the named database. -F, --featureList=filename text file containing list of binary feature vector files to process -T, --timesList=filename text file containing list of ascii --times for each --features file in --featureList. -K, --keyList=filename text file containing list of unique identifiers associated with --features. Database Search: Thse commands control the retrieval behaviour. -Q, --QUERY=searchtype content-based search on --database using --features as a query. Optionally restrict the search to those tracks identified in a --keyList. (possible values="point", "track", "sequence") -p, --qpoint=position ordinal position of query start point in --features file. (default=`0') -e, --exhaustive exhaustive search: iterate through all query vectors in search. Overrides --qpoint. (default=off) -n, --pointnn=numpoints number of point nearest neighbours to use in retrieval. (default=`10') -R, --radius=DOUBLE radius search, returns all points/tracks/sequences inside given radius. (default=`1.0') -x, --expandfactor=DOUBLE time compress/expand factor of result length to query length [1.0 .. 100.0]. (default=`1.1') -o, --rotate rotate query vectors for rotationally invariant search. (default=off) -r, --resultlength=length maximum length of the result list. (default=`10') -l, --sequencelength=length length of sequences for sequence search. (default=`16') -h, --sequencehop=hop hop size of sequence window for sequence search. (default=`1') Web Services: These commands enable the database process to establish a connection via the internet and operate as separate client and server processes. -s, --SERVER=port run as standalone web service on named port. (default=`80011') -c, --client=hostname:port run as a client using named host service. Copyright (C) 2007 Michael Casey, Goldsmiths, University of London outputs: key1 distance1 qpos1 spos1 key2 distance2 qpos2 spos2 ... keyN distanceN qposN sposN */ #include "audioDB.h" #define O2_DEBUG void audioDB::error(const char* a, const char* b){ cerr << a << ":" << b << endl; exit(1); } audioDB::audioDB(const unsigned argc, char* const argv[], adb__queryResult *adbQueryResult): dim(0), dbName(0), inFile(0), key(0), trackFile(0), trackFileName(0), timesFile(0), timesFileName(0), usingTimes(0), command(0), dbfid(0), db(0), dbH(0), infid(0), indata(0), queryType(O2_FLAG_POINT_QUERY), verbosity(1), pointNN(O2_DEFAULT_POINTNN), trackNN(O2_DEFAULT_TRACKNN), trackTable(0), fileTable(0), dataBuf(0), l2normTable(0), timesTable(0), qNorm(0), sequenceLength(16), sequenceHop(1), queryPoint(0), usingQueryPoint(0), isClient(0), isServer(0), port(0), timesTol(0.1), radius(0){ if(processArgs(argc, argv)<0){ printf("No command found.\n"); cmdline_parser_print_version (); if (strlen(gengetopt_args_info_purpose) > 0) printf("%s\n", gengetopt_args_info_purpose); printf("%s\n", gengetopt_args_info_usage); printf("%s\n", gengetopt_args_info_help[1]); printf("%s\n", gengetopt_args_info_help[2]); printf("%s\n", gengetopt_args_info_help[0]); exit(1); } if(O2_ACTION(COM_SERVER)) startServer(); else if(O2_ACTION(COM_CREATE)) create(dbName); else if(O2_ACTION(COM_INSERT)) insert(dbName, inFile); else if(O2_ACTION(COM_BATCHINSERT)) batchinsert(dbName, inFile); else if(O2_ACTION(COM_QUERY)) if(isClient) ws_query(dbName, inFile, (char*)hostport); else query(dbName, inFile, adbQueryResult); else if(O2_ACTION(COM_STATUS)) if(isClient) ws_status(dbName,(char*)hostport); else status(dbName); else if(O2_ACTION(COM_L2NORM)) l2norm(dbName); else if(O2_ACTION(COM_DUMP)) dump(dbName); else error("Unrecognized command",command); } audioDB::~audioDB(){ // Clean up if(indata) munmap(indata,statbuf.st_size); if(db) munmap(db,O2_DEFAULTDBSIZE); if(dbfid>0) close(dbfid); if(infid>0) close(infid); if(dbH) delete dbH; } int audioDB::processArgs(const unsigned argc, char* const argv[]){ if(argc<2){ cmdline_parser_print_version (); if (strlen(gengetopt_args_info_purpose) > 0) printf("%s\n", gengetopt_args_info_purpose); printf("%s\n", gengetopt_args_info_usage); printf("%s\n", gengetopt_args_info_help[1]); printf("%s\n", gengetopt_args_info_help[2]); printf("%s\n", gengetopt_args_info_help[0]); exit(0); } if (cmdline_parser (argc, argv, &args_info) != 0) exit(1) ; if(args_info.help_given){ cmdline_parser_print_help(); exit(0); } if(args_info.verbosity_given){ verbosity=args_info.verbosity_arg; if(verbosity<0 || verbosity>10){ cerr << "Warning: verbosity out of range, setting to 1" << endl; verbosity=1; } } if(args_info.radius_given){ radius=args_info.radius_arg; if(radius<=0 || radius>1000000000){ cerr << "Warning: radius out of range" << endl; exit(1); } else if(verbosity>3) cerr << "Setting radius to " << radius << endl; } if(args_info.SERVER_given){ command=COM_SERVER; port=args_info.SERVER_arg; if(port<100 || port > 100000) error("port out of range"); isServer=1; return 0; } // No return on client command, find database command if(args_info.client_given){ command=COM_CLIENT; hostport=args_info.client_arg; isClient=1; } if(args_info.NEW_given){ command=COM_CREATE; dbName=args_info.database_arg; return 0; } if(args_info.STATUS_given){ command=COM_STATUS; dbName=args_info.database_arg; return 0; } if(args_info.DUMP_given){ command=COM_DUMP; dbName=args_info.database_arg; return 0; } if(args_info.L2NORM_given){ command=COM_L2NORM; dbName=args_info.database_arg; return 0; } if(args_info.INSERT_given){ command=COM_INSERT; dbName=args_info.database_arg; inFile=args_info.features_arg; if(args_info.key_given) key=args_info.key_arg; if(args_info.times_given){ timesFileName=args_info.times_arg; if(strlen(timesFileName)>0){ if(!(timesFile = new ifstream(timesFileName,ios::in))) error("Could not open times file for reading", timesFileName); usingTimes=1; } } return 0; } if(args_info.BATCHINSERT_given){ command=COM_BATCHINSERT; dbName=args_info.database_arg; inFile=args_info.featureList_arg; if(args_info.keyList_given) key=args_info.keyList_arg; // INCONSISTENT NO CHECK /* TO DO: REPLACE WITH if(args_info.keyList_given){ trackFileName=args_info.keyList_arg; if(strlen(trackFileName)>0 && !(trackFile = new ifstream(trackFileName,ios::in))) error("Could not open keyList file for reading",trackFileName); } AND UPDATE BATCHINSERT() */ if(args_info.timesList_given){ timesFileName=args_info.timesList_arg; if(strlen(timesFileName)>0){ if(!(timesFile = new ifstream(timesFileName,ios::in))) error("Could not open timesList file for reading", timesFileName); usingTimes=1; } } return 0; } // Query command and arguments if(args_info.QUERY_given){ command=COM_QUERY; dbName=args_info.database_arg; inFile=args_info.features_arg; if(args_info.keyList_given){ trackFileName=args_info.keyList_arg; if(strlen(trackFileName)>0 && !(trackFile = new ifstream(trackFileName,ios::in))) error("Could not open keyList file for reading",trackFileName); } if(args_info.times_given){ timesFileName=args_info.times_arg; if(strlen(timesFileName)>0){ if(!(timesFile = new ifstream(timesFileName,ios::in))) error("Could not open times file for reading", timesFileName); usingTimes=1; } } // query type if(strncmp(args_info.QUERY_arg, "track", MAXSTR)==0) queryType=O2_FLAG_TRACK_QUERY; else if(strncmp(args_info.QUERY_arg, "point", MAXSTR)==0) queryType=O2_FLAG_POINT_QUERY; else if(strncmp(args_info.QUERY_arg, "sequence", MAXSTR)==0) queryType=O2_FLAG_SEQUENCE_QUERY; else error("unsupported query type",args_info.QUERY_arg); if(!args_info.exhaustive_flag){ queryPoint = args_info.qpoint_arg; usingQueryPoint=1; if(queryPoint<0 || queryPoint >10000) error("queryPoint out of range: 0 <= queryPoint <= 10000"); } pointNN=args_info.pointnn_arg; if(pointNN<1 || pointNN >1000) error("pointNN out of range: 1 <= pointNN <= 1000"); trackNN=args_info.resultlength_arg; if(trackNN<1 || trackNN >10000) error("resultlength out of range: 1 <= resultlength <= 1000"); sequenceLength=args_info.sequencelength_arg; if(sequenceLength<1 || sequenceLength >1000) error("seqlen out of range: 1 <= seqlen <= 1000"); sequenceHop=args_info.sequencehop_arg; if(sequenceHop<1 || sequenceHop >1000) error("seqhop out of range: 1 <= seqhop <= 1000"); return 0; } return -1; // no command found } /* Make a new database The database consists of: header --------------------------------------------------------------------------------- | magic 4 bytes| numFiles 4 bytes | dim 4 bytes | length 4 bytes |flags 4 bytes | --------------------------------------------------------------------------------- keyTable : list of keys of tracks -------------------------------------------------------------------------- | key 256 bytes | -------------------------------------------------------------------------- O2_MAXFILES*02_FILENAMELENGTH trackTable : Maps implicit feature index to a feature vector matrix -------------------------------------------------------------------------- | numVectors (4 bytes) | -------------------------------------------------------------------------- O2_MAXFILES * 02_MEANNUMFEATURES * sizeof(INT) featureTable -------------------------------------------------------------------------- | v1 v2 v3 ... vd (double) | -------------------------------------------------------------------------- O2_MAXFILES * 02_MEANNUMFEATURES * DIM * sizeof(DOUBLE) timesTable -------------------------------------------------------------------------- | timestamp (double) | -------------------------------------------------------------------------- O2_MAXFILES * 02_MEANNUMFEATURES * sizeof(DOUBLE) l2normTable -------------------------------------------------------------------------- | nm (double) | -------------------------------------------------------------------------- O2_MAXFILES * 02_MEANNUMFEATURES * sizeof(DOUBLE) */ void audioDB::create(const char* dbName){ if ((dbfid = open (dbName, O_RDWR|O_CREAT|O_TRUNC, S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH)) < 0) error("Can't open database file", dbName); // go to the location corresponding to the last byte if (lseek (dbfid, O2_DEFAULTDBSIZE - 1, SEEK_SET) == -1) error("lseek error in db file"); // write a dummy byte at the last location if (write (dbfid, "", 1) != 1) error("write error"); // mmap the output file if(verbosity) cerr << "header size:" << O2_HEADERSIZE << endl; if ((db = (char*) mmap(0, O2_DEFAULTDBSIZE, PROT_READ | PROT_WRITE, MAP_SHARED, dbfid, 0)) == (caddr_t) -1) error("mmap error for creating database"); dbH = new dbTableHeaderT(); assert(dbH); // Initialize header dbH->magic=O2_MAGIC; dbH->numFiles=0; dbH->length=0; dbH->dim=0; dbH->flags=0; //O2_FLAG_L2NORM; memcpy (db, dbH, O2_HEADERSIZE); if(verbosity) cerr << COM_CREATE << " " << dbName << endl; } void audioDB::drop(){ } // initTables - memory map files passed as arguments // Precondition: database has already been created void audioDB::initTables(const char* dbName, const char* inFile=0){ if ((dbfid = open (dbName, O_RDWR)) < 0) error("Can't open database file:", dbName); // open the input file if (inFile && (infid = open (inFile, O_RDONLY)) < 0) error("can't open input file for reading", inFile); // find size of input file if (inFile && fstat (infid,&statbuf) < 0) error("fstat error finding size of input"); // Get the database header info dbH = new dbTableHeaderT(); assert(dbH); if(read(dbfid,(char*)dbH,sizeof(dbTableHeaderT))!=sizeof(dbTableHeaderT)) error("error reading db header"); fileTableOffset = O2_HEADERSIZE; trackTableOffset = fileTableOffset + O2_FILETABLESIZE*O2_MAXFILES; dataoffset = trackTableOffset + O2_TRACKTABLESIZE*O2_MAXFILES; l2normTableOffset = O2_DEFAULTDBSIZE - O2_MAXFILES*O2_MEANNUMVECTORS*sizeof(double); timesTableOffset = l2normTableOffset - O2_MAXFILES*O2_MEANNUMVECTORS*sizeof(double); if(dbH->magic!=O2_MAGIC){ cerr << "expected: " << O2_MAGIC << ", got:" << dbH->magic << endl; error("database file has incorrect header",dbName); } if(inFile) if(dbH->dim==0 && dbH->length==0) // empty database read(infid,&dbH->dim,sizeof(unsigned)); // initialize with input dimensionality else { unsigned test; read(infid,&test,sizeof(unsigned)); if(dbH->dim!=test){ cerr << "error: expected dimension: " << dbH->dim << ", got :" << test <<endl; error("feature dimensions do not match database table dimensions"); } } // mmap the input file if (inFile && (indata = (char*)mmap (0, statbuf.st_size, PROT_READ, MAP_SHARED, infid, 0)) == (caddr_t) -1) error("mmap error for input"); // mmap the database file if ((db = (char*) mmap(0, O2_DEFAULTDBSIZE, PROT_READ | PROT_WRITE, MAP_SHARED, dbfid, 0)) == (caddr_t) -1) error("mmap error for creating database"); // Make some handy tables with correct types fileTable= (char*)(db+fileTableOffset); trackTable = (unsigned*)(db+trackTableOffset); dataBuf = (double*)(db+dataoffset); l2normTable = (double*)(db+l2normTableOffset); timesTable = (double*)(db+timesTableOffset); } void audioDB::insert(const char* dbName, const char* inFile){ initTables(dbName, inFile); if(!usingTimes && (dbH->flags & O2_FLAG_TIMES)) error("Must use timestamps with timestamped database","use --times"); // Check that there is room for at least 1 more file if((char*)timesTable<((char*)dataBuf+dbH->length+statbuf.st_size-sizeof(int))) error("No more room in database","insert failed: reason database is full."); if(!key) key=inFile; // Linear scan of filenames check for pre-existing feature unsigned alreadyInserted=0; for(unsigned k=0; k<dbH->numFiles; k++) if(strncmp(fileTable + k*O2_FILETABLESIZE, key, strlen(key))==0){ alreadyInserted=1; break; } if(alreadyInserted){ if(verbosity) cerr << "Warning: key already exists in database, ignoring: " <<inFile << endl; return; } // Make a track index table of features to file indexes unsigned numVectors = (statbuf.st_size-sizeof(int))/(sizeof(double)*dbH->dim); if(!numVectors){ if(verbosity) cerr << "Warning: ignoring zero-length feature vector file:" << key << endl; // CLEAN UP munmap(indata,statbuf.st_size); munmap(db,O2_DEFAULTDBSIZE); close(infid); return; } strncpy(fileTable + dbH->numFiles*O2_FILETABLESIZE, key, strlen(key)); unsigned insertoffset = dbH->length;// Store current state // Check times status and insert times from file unsigned timesoffset=insertoffset/(dbH->dim*sizeof(double)); double* timesdata=timesTable+timesoffset; assert(timesdata+numVectors<l2normTable); insertTimeStamps(numVectors, timesFile, timesdata); // Increment file count dbH->numFiles++; // Update Header information dbH->length+=(statbuf.st_size-sizeof(int)); // Copy the header back to the database memcpy (db, dbH, sizeof(dbTableHeaderT)); // Update track to file index map //memcpy (db+trackTableOffset+(dbH->numFiles-1)*sizeof(unsigned), &numVectors, sizeof(unsigned)); memcpy (trackTable+dbH->numFiles-1, &numVectors, sizeof(unsigned)); // Update the feature database memcpy (db+dataoffset+insertoffset, indata+sizeof(int), statbuf.st_size-sizeof(int)); // Norm the vectors on input if the database is already L2 normed if(dbH->flags & O2_FLAG_L2NORM) unitNormAndInsertL2((double*)(db+dataoffset+insertoffset), dbH->dim, numVectors, 1); // append // Report status status(dbName); if(verbosity) cerr << COM_INSERT << " " << dbName << " " << numVectors << " vectors " << (statbuf.st_size-sizeof(int)) << " bytes." << endl; // CLEAN UP munmap(indata,statbuf.st_size); close(infid); } void audioDB::insertTimeStamps(unsigned numVectors, ifstream* timesFile, double* timesdata){ unsigned numtimes=0; if(usingTimes){ if(!(dbH->flags & O2_FLAG_TIMES) && !dbH->numFiles) dbH->flags=dbH->flags|O2_FLAG_TIMES; else if(!(dbH->flags&O2_FLAG_TIMES)){ cerr << "Warning: timestamp file used with non time-stamped database: ignoring timestamps" << endl; usingTimes=0; } if(!timesFile->is_open()){ if(dbH->flags & O2_FLAG_TIMES){ munmap(indata,statbuf.st_size); munmap(db,O2_DEFAULTDBSIZE); error("problem opening times file on timestamped database",timesFileName); } else{ cerr << "Warning: problem opening times file. But non-timestamped database, so ignoring times file." << endl; usingTimes=0; } } // Process time file if(usingTimes){ do{ *timesFile>>*timesdata++; if(timesFile->eof()) break; numtimes++; }while(!timesFile->eof() && numtimes<numVectors); if(!timesFile->eof()){ double dummy; do{ *timesFile>>dummy; if(timesFile->eof()) break; numtimes++; }while(!timesFile->eof()); } if(numtimes<numVectors || numtimes>numVectors+2){ munmap(indata,statbuf.st_size); munmap(db,O2_DEFAULTDBSIZE); close(infid); cerr << "expected " << numVectors << " found " << numtimes << endl; error("Times file is incorrect length for features file",inFile); } if(verbosity>2) cerr << "numtimes: " << numtimes << endl; } } } void audioDB::batchinsert(const char* dbName, const char* inFile){ if ((dbfid = open (dbName, O_RDWR)) < 0) error("Can't open database file:", dbName); if(!key) key=inFile; ifstream *filesIn = 0; ifstream *keysIn = 0; ifstream* thisTimesFile = 0; if(!(filesIn = new ifstream(inFile))) error("Could not open batch in file", inFile); if(key && key!=inFile) if(!(keysIn = new ifstream(key))) error("Could not open batch key file",key); // Get the database header info dbH = new dbTableHeaderT(); assert(dbH); if(read(dbfid,(char*)dbH,sizeof(dbTableHeaderT))!=sizeof(dbTableHeaderT)) error("error reading db header"); if(!usingTimes && (dbH->flags & O2_FLAG_TIMES)) error("Must use timestamps with timestamped database","use --times"); fileTableOffset = O2_HEADERSIZE; trackTableOffset = fileTableOffset + O2_FILETABLESIZE*O2_MAXFILES; dataoffset = trackTableOffset + O2_TRACKTABLESIZE*O2_MAXFILES; l2normTableOffset = O2_DEFAULTDBSIZE - O2_MAXFILES*O2_MEANNUMVECTORS*sizeof(double); timesTableOffset = l2normTableOffset - O2_MAXFILES*O2_MEANNUMVECTORS*sizeof(double); if(dbH->magic!=O2_MAGIC){ cerr << "expected:" << O2_MAGIC << ", got:" << dbH->magic << endl; error("database file has incorrect header",dbName); } unsigned totalVectors=0; char *thisKey = new char[MAXSTR]; char *thisFile = new char[MAXSTR]; char *thisTimesFileName = new char[MAXSTR]; do{ filesIn->getline(thisFile,MAXSTR); if(key && key!=inFile) keysIn->getline(thisKey,MAXSTR); else thisKey = thisFile; if(usingTimes) timesFile->getline(thisTimesFileName,MAXSTR); if(filesIn->eof()) break; // open the input file if (thisFile && (infid = open (thisFile, O_RDONLY)) < 0) error("can't open feature file for reading", thisFile); // find size of input file if (thisFile && fstat (infid,&statbuf) < 0) error("fstat error finding size of input"); // mmap the database file if ((db = (char*) mmap(0, O2_DEFAULTDBSIZE, PROT_READ | PROT_WRITE, MAP_SHARED, dbfid, 0)) == (caddr_t) -1) error("mmap error for creating database"); // Make some handy tables with correct types fileTable= (char*)(db+fileTableOffset); trackTable = (unsigned*)(db+trackTableOffset); dataBuf = (double*)(db+dataoffset); l2normTable = (double*)(db+l2normTableOffset); timesTable = (double*)(db+timesTableOffset); // Check that there is room for at least 1 more file if((char*)timesTable<((char*)dataBuf+(dbH->length+statbuf.st_size-sizeof(int)))) error("No more room in database","insert failed: reason database is full."); if(thisFile) if(dbH->dim==0 && dbH->length==0) // empty database read(infid,&dbH->dim,sizeof(unsigned)); // initialize with input dimensionality else { unsigned test; read(infid,&test,sizeof(unsigned)); if(dbH->dim!=test){ cerr << "error: expected dimension: " << dbH->dim << ", got :" << test <<endl; error("feature dimensions do not match database table dimensions"); } } // mmap the input file if (thisFile && (indata = (char*)mmap (0, statbuf.st_size, PROT_READ, MAP_SHARED, infid, 0)) == (caddr_t) -1) error("mmap error for input"); // Linear scan of filenames check for pre-existing feature unsigned alreadyInserted=0; for(unsigned k=0; k<dbH->numFiles; k++) if(strncmp(fileTable + k*O2_FILETABLESIZE, thisKey, strlen(thisKey))==0){ alreadyInserted=1; break; } if(alreadyInserted){ if(verbosity) cerr << "Warning: key already exists in database:" << thisKey << endl; } else{ // Make a track index table of features to file indexes unsigned numVectors = (statbuf.st_size-sizeof(int))/(sizeof(double)*dbH->dim); if(!numVectors){ if(verbosity) cerr << "Warning: ignoring zero-length feature vector file:" << thisKey << endl; } else{ if(usingTimes){ if(timesFile->eof()) error("not enough timestamp files in timesList"); thisTimesFile=new ifstream(thisTimesFileName,ios::in); if(!thisTimesFile->is_open()) error("Cannot open timestamp file",thisTimesFileName); unsigned insertoffset=dbH->length; unsigned timesoffset=insertoffset/(dbH->dim*sizeof(double)); double* timesdata=timesTable+timesoffset; assert(timesdata+numVectors<l2normTable); insertTimeStamps(numVectors,thisTimesFile,timesdata); if(thisTimesFile) delete thisTimesFile; } strncpy(fileTable + dbH->numFiles*O2_FILETABLESIZE, thisKey, strlen(thisKey)); unsigned insertoffset = dbH->length;// Store current state // Increment file count dbH->numFiles++; // Update Header information dbH->length+=(statbuf.st_size-sizeof(int)); // Copy the header back to the database memcpy (db, dbH, sizeof(dbTableHeaderT)); // Update track to file index map //memcpy (db+trackTableOffset+(dbH->numFiles-1)*sizeof(unsigned), &numVectors, sizeof(unsigned)); memcpy (trackTable+dbH->numFiles-1, &numVectors, sizeof(unsigned)); // Update the feature database memcpy (db+dataoffset+insertoffset, indata+sizeof(int), statbuf.st_size-sizeof(int)); // Norm the vectors on input if the database is already L2 normed if(dbH->flags & O2_FLAG_L2NORM) unitNormAndInsertL2((double*)(db+dataoffset+insertoffset), dbH->dim, numVectors, 1); // append totalVectors+=numVectors; } } // CLEAN UP munmap(indata,statbuf.st_size); close(infid); munmap(db,O2_DEFAULTDBSIZE); }while(!filesIn->eof()); // mmap the database file if ((db = (char*) mmap(0, O2_DEFAULTDBSIZE, PROT_READ | PROT_WRITE, MAP_SHARED, dbfid, 0)) == (caddr_t) -1) error("mmap error for creating database"); if(verbosity) cerr << COM_BATCHINSERT << " " << dbName << " " << totalVectors << " vectors " << totalVectors*dbH->dim*sizeof(double) << " bytes." << endl; // Report status status(dbName); munmap(db,O2_DEFAULTDBSIZE); } void audioDB::ws_status(const char*dbName, char* hostport){ struct soap soap; int adbStatusResult; // Query an existing adb database soap_init(&soap); if(soap_call_adb__status(&soap,hostport,NULL,(char*)dbName,adbStatusResult)==SOAP_OK) std::cout << "result = " << adbStatusResult << std::endl; else soap_print_fault(&soap,stderr); soap_destroy(&soap); soap_end(&soap); soap_done(&soap); } void audioDB::ws_query(const char*dbName, const char *trackKey, const char* hostport){ struct soap soap; adb__queryResult adbQueryResult; soap_init(&soap); if(soap_call_adb__query(&soap,hostport,NULL, (char*)dbName,(char*)trackKey,(char*)trackFileName,(char*)timesFileName, queryType, queryPoint, pointNN, trackNN, sequenceLength, adbQueryResult)==SOAP_OK){ //std::cerr << "result list length:" << adbQueryResult.__sizeRlist << std::endl; for(int i=0; i<adbQueryResult.__sizeRlist; i++) std::cout << adbQueryResult.Rlist[i] << " " << adbQueryResult.Dist[i] << " " << adbQueryResult.Qpos[i] << " " << adbQueryResult.Spos[i] << std::endl; } else soap_print_fault(&soap,stderr); soap_destroy(&soap); soap_end(&soap); soap_done(&soap); } void audioDB::status(const char* dbName){ if(!dbH) initTables(dbName, 0); // Update Header information cout << "num files:" << dbH->numFiles << endl; cout << "data dim:" << dbH->dim <<endl; if(dbH->dim>0){ cout << "total vectors:" << dbH->length/(sizeof(double)*dbH->dim)<<endl; cout << "vectors available:" << (timesTableOffset-(dataoffset+dbH->length))/(sizeof(double)*dbH->dim) << endl; } cout << "total bytes:" << dbH->length << " (" << (100.0*dbH->length)/(timesTableOffset-dataoffset) << "%)" << endl; cout << "bytes available:" << timesTableOffset-(dataoffset+dbH->length) << " (" << (100.0*(timesTableOffset-(dataoffset+dbH->length)))/(timesTableOffset-dataoffset) << "%)" << endl; cout << "flags:" << dbH->flags << endl; unsigned dudCount=0; unsigned nullCount=0; for(unsigned k=0; k<dbH->numFiles; k++){ if(trackTable[k]<sequenceLength){ dudCount++; if(!trackTable[k]) nullCount++; } } cout << "null count: " << nullCount << " small sequence count " << dudCount-nullCount << endl; } void audioDB::dump(const char* dbName){ if(!dbH) initTables(dbName,0); for(unsigned k=0, j=0; k<dbH->numFiles; k++){ cout << fileTable+k*O2_FILETABLESIZE << " " << trackTable[k] << endl; j+=trackTable[k]; } status(dbName); } void audioDB::l2norm(const char* dbName){ initTables(dbName,0); if(dbH->length>0){ unsigned numVectors = dbH->length/(sizeof(double)*dbH->dim); unitNormAndInsertL2(dataBuf, dbH->dim, numVectors, 0); // No append } // Update database flags dbH->flags = dbH->flags|O2_FLAG_L2NORM; memcpy (db, dbH, O2_HEADERSIZE); } void audioDB::query(const char* dbName, const char* inFile, adb__queryResult *adbQueryResult){ switch(queryType){ case O2_FLAG_POINT_QUERY: pointQuery(dbName, inFile, adbQueryResult); break; case O2_FLAG_SEQUENCE_QUERY: if(radius==0) trackSequenceQueryNN(dbName, inFile, adbQueryResult); else trackSequenceQueryRad(dbName, inFile, adbQueryResult); break; case O2_FLAG_TRACK_QUERY: trackPointQuery(dbName, inFile, adbQueryResult); break; default: error("unrecognized queryType in query()"); } } //return ordinal position of key in keyTable unsigned audioDB::getKeyPos(char* key){ for(unsigned k=0; k<dbH->numFiles; k++) if(strncmp(fileTable + k*O2_FILETABLESIZE, key, strlen(key))==0) return k; error("Key not found",key); return O2_ERR_KEYNOTFOUND; } // Basic point query engine void audioDB::pointQuery(const char* dbName, const char* inFile, adb__queryResult *adbQueryResult){ initTables(dbName, inFile); // For each input vector, find the closest pointNN matching output vectors and report // we use stdout in this stub version unsigned numVectors = (statbuf.st_size-sizeof(int))/(sizeof(double)*dbH->dim); double* query = (double*)(indata+sizeof(int)); double* data = dataBuf; double* queryCopy = 0; if( dbH->flags & O2_FLAG_L2NORM ){ // Make a copy of the query queryCopy = new double[numVectors*dbH->dim]; qNorm = new double[numVectors]; assert(queryCopy&&qNorm); memcpy(queryCopy, query, numVectors*dbH->dim*sizeof(double)); unitNorm(queryCopy, dbH->dim, numVectors, qNorm); query = queryCopy; } // Make temporary dynamic memory for results assert(pointNN>0 && pointNN<=O2_MAXNN); double distances[pointNN]; unsigned qIndexes[pointNN]; unsigned sIndexes[pointNN]; for(unsigned k=0; k<pointNN; k++){ distances[k]=0.0; qIndexes[k]=~0; sIndexes[k]=~0; } unsigned j=numVectors; unsigned k,l,n; double thisDist; unsigned totalVecs=dbH->length/(dbH->dim*sizeof(double)); double meanQdur = 0; double* timesdata = 0; double* dbdurs = 0; if(usingTimes && !(dbH->flags & O2_FLAG_TIMES)){ cerr << "warning: ignoring query timestamps for non-timestamped database" << endl; usingTimes=0; } else if(!usingTimes && (dbH->flags & O2_FLAG_TIMES)) cerr << "warning: no timestamps given for query. Ignoring database timestamps." << endl; else if(usingTimes && (dbH->flags & O2_FLAG_TIMES)){ timesdata = new double[numVectors]; insertTimeStamps(numVectors, timesFile, timesdata); // Calculate durations of points for(k=0; k<numVectors-1; k++){ timesdata[k]=timesdata[k+1]-timesdata[k]; meanQdur+=timesdata[k]; } meanQdur/=k; // Individual exhaustive timepoint durations dbdurs = new double[totalVecs]; for(k=0; k<totalVecs-1; k++) dbdurs[k]=timesTable[k+1]-timesTable[k]; j--; // decrement vector counter by one } if(usingQueryPoint) if(queryPoint>numVectors-1) error("queryPoint > numVectors in query"); else{ if(verbosity>1) cerr << "query point: " << queryPoint << endl; cerr.flush(); query=query+queryPoint*dbH->dim; numVectors=queryPoint+1; j=1; } gettimeofday(&tv1, NULL); while(j--){ // query data=dataBuf; k=totalVecs; // number of database vectors while(k--){ // database thisDist=0; l=dbH->dim; double* q=query; while(l--) thisDist+=*q++**data++; if(!usingTimes || (usingTimes && fabs(dbdurs[totalVecs-k-1]-timesdata[numVectors-j-1])<timesdata[numVectors-j-1]*timesTol)){ n=pointNN; while(n--){ if(thisDist>=distances[n]){ if((n==0 || thisDist<=distances[n-1])){ // Copy all values above up the queue for( l=pointNN-1 ; l >= n+1 ; l--){ distances[l]=distances[l-1]; qIndexes[l]=qIndexes[l-1]; sIndexes[l]=sIndexes[l-1]; } distances[n]=thisDist; qIndexes[n]=numVectors-j-1; sIndexes[n]=dbH->length/(sizeof(double)*dbH->dim)-k-1; break; } } else break; } } } // Move query pointer to next query point query+=dbH->dim; } gettimeofday(&tv2, NULL); if(verbosity>1) cerr << endl << " elapsed time:" << ( tv2.tv_sec*1000 + tv2.tv_usec/1000 ) - ( tv1.tv_sec*1000+tv1.tv_usec/1000 ) << " msec" << endl; if(adbQueryResult==0){ // Output answer // Loop over nearest neighbours for(k=0; k < pointNN; k++){ // Scan for key unsigned cumTrack=0; for(l=0 ; l<dbH->numFiles; l++){ cumTrack+=trackTable[l]; if(sIndexes[k]<cumTrack){ cout << fileTable+l*O2_FILETABLESIZE << " " << distances[k] << " " << qIndexes[k] << " " << sIndexes[k]+trackTable[l]-cumTrack << endl; break; } } } } else{ // Process Web Services Query int listLen = pointNN; adbQueryResult->__sizeRlist=listLen; adbQueryResult->__sizeDist=listLen; adbQueryResult->__sizeQpos=listLen; adbQueryResult->__sizeSpos=listLen; adbQueryResult->Rlist= new char*[listLen]; adbQueryResult->Dist = new double[listLen]; adbQueryResult->Qpos = new int[listLen]; adbQueryResult->Spos = new int[listLen]; for(k=0; k<adbQueryResult->__sizeRlist; k++){ adbQueryResult->Rlist[k]=new char[O2_MAXFILESTR]; adbQueryResult->Dist[k]=distances[k]; adbQueryResult->Qpos[k]=qIndexes[k]; unsigned cumTrack=0; for(l=0 ; l<dbH->numFiles; l++){ cumTrack+=trackTable[l]; if(sIndexes[k]<cumTrack){ sprintf(adbQueryResult->Rlist[k], "%s", fileTable+l*O2_FILETABLESIZE); break; } } adbQueryResult->Spos[k]=sIndexes[k]+trackTable[l]-cumTrack; } } // Clean up if(queryCopy) delete queryCopy; if(qNorm) delete qNorm; if(timesdata) delete timesdata; if(dbdurs) delete dbdurs; } // trackPointQuery // return the trackNN closest tracks to the query track // uses average of pointNN points per track void audioDB::trackPointQuery(const char* dbName, const char* inFile, adb__queryResult *adbQueryResult){ initTables(dbName, inFile); // For each input vector, find the closest pointNN matching output vectors and report unsigned numVectors = (statbuf.st_size-sizeof(int))/(sizeof(double)*dbH->dim); unsigned numTracks = dbH->numFiles; double* query = (double*)(indata+sizeof(int)); double* data = dataBuf; double* queryCopy = 0; if( dbH->flags & O2_FLAG_L2NORM ){ // Make a copy of the query queryCopy = new double[numVectors*dbH->dim]; qNorm = new double[numVectors]; assert(queryCopy&&qNorm); memcpy(queryCopy, query, numVectors*dbH->dim*sizeof(double)); unitNorm(queryCopy, dbH->dim, numVectors, qNorm); query = queryCopy; } assert(pointNN>0 && pointNN<=O2_MAXNN); assert(trackNN>0 && trackNN<=O2_MAXNN); // Make temporary dynamic memory for results double trackDistances[trackNN]; unsigned trackIDs[trackNN]; unsigned trackQIndexes[trackNN]; unsigned trackSIndexes[trackNN]; double distances[pointNN]; unsigned qIndexes[pointNN]; unsigned sIndexes[pointNN]; unsigned j=numVectors; // number of query points unsigned k,l,n, track, trackOffset=0, processedTracks=0; double thisDist; for(k=0; k<pointNN; k++){ distances[k]=0.0; qIndexes[k]=~0; sIndexes[k]=~0; } for(k=0; k<trackNN; k++){ trackDistances[k]=0.0; trackQIndexes[k]=~0; trackSIndexes[k]=~0; trackIDs[k]=~0; } double meanQdur = 0; double* timesdata = 0; double* meanDBdur = 0; if(usingTimes && !(dbH->flags & O2_FLAG_TIMES)){ cerr << "warning: ignoring query timestamps for non-timestamped database" << endl; usingTimes=0; } else if(!usingTimes && (dbH->flags & O2_FLAG_TIMES)) cerr << "warning: no timestamps given for query. Ignoring database timestamps." << endl; else if(usingTimes && (dbH->flags & O2_FLAG_TIMES)){ timesdata = new double[numVectors]; insertTimeStamps(numVectors, timesFile, timesdata); // Calculate durations of points for(k=0; k<numVectors-1; k++){ timesdata[k]=timesdata[k+1]-timesdata[k]; meanQdur+=timesdata[k]; } meanQdur/=k; meanDBdur = new double[dbH->numFiles]; for(k=0; k<dbH->numFiles; k++){ meanDBdur[k]=0.0; for(j=0; j<trackTable[k]-1 ; j++) meanDBdur[k]+=timesTable[j+1]-timesTable[j]; meanDBdur[k]/=j; } } if(usingQueryPoint) if(queryPoint>numVectors-1) error("queryPoint > numVectors in query"); else{ if(verbosity>1) cerr << "query point: " << queryPoint << endl; cerr.flush(); query=query+queryPoint*dbH->dim; numVectors=queryPoint+1; } // build track offset table unsigned *trackOffsetTable = new unsigned[dbH->numFiles]; unsigned cumTrack=0; unsigned trackIndexOffset; for(k=0; k<dbH->numFiles;k++){ trackOffsetTable[k]=cumTrack; cumTrack+=trackTable[k]*dbH->dim; } char nextKey[MAXSTR]; gettimeofday(&tv1, NULL); for(processedTracks=0, track=0 ; processedTracks < dbH->numFiles ; track++, processedTracks++){ if(trackFile){ if(!trackFile->eof()){ trackFile->getline(nextKey,MAXSTR); track=getKeyPos(nextKey); } else break; } trackOffset=trackOffsetTable[track]; // numDoubles offset trackIndexOffset=trackOffset/dbH->dim; // numVectors offset if(verbosity>7) cerr << track << "." << trackOffset/(dbH->dim) << "." << trackTable[track] << " | ";cerr.flush(); if(dbH->flags & O2_FLAG_L2NORM) usingQueryPoint?query=queryCopy+queryPoint*dbH->dim:query=queryCopy; else usingQueryPoint?query=(double*)(indata+sizeof(int))+queryPoint*dbH->dim:query=(double*)(indata+sizeof(int)); if(usingQueryPoint) j=1; else j=numVectors; while(j--){ k=trackTable[track]; // number of vectors in track data=dataBuf+trackOffset; // data for track while(k--){ thisDist=0; l=dbH->dim; double* q=query; while(l--) thisDist+=*q++**data++; if(!usingTimes || (usingTimes && fabs(meanDBdur[track]-meanQdur)<meanQdur*timesTol)){ n=pointNN; while(n--){ if(thisDist>=distances[n]){ if((n==0 || thisDist<=distances[n-1])){ // Copy all values above up the queue for( l=pointNN-1 ; l > n ; l--){ distances[l]=distances[l-1]; qIndexes[l]=qIndexes[l-1]; sIndexes[l]=sIndexes[l-1]; } distances[n]=thisDist; qIndexes[n]=numVectors-j-1; sIndexes[n]=trackTable[track]-k-1; break; } } else break; } } } // track // Move query pointer to next query point query+=dbH->dim; } // query // Take the average of this track's distance // Test the track distances thisDist=0; n=pointNN; while(n--) thisDist+=distances[pointNN-n-1]; thisDist/=pointNN; n=trackNN; while(n--){ if(thisDist>=trackDistances[n]){ if((n==0 || thisDist<=trackDistances[n-1])){ // Copy all values above up the queue for( l=pointNN-1 ; l > n ; l--){ trackDistances[l]=trackDistances[l-1]; trackQIndexes[l]=trackQIndexes[l-1]; trackSIndexes[l]=trackSIndexes[l-1]; trackIDs[l]=trackIDs[l-1]; } trackDistances[n]=thisDist; trackQIndexes[n]=qIndexes[0]; trackSIndexes[n]=sIndexes[0]; trackIDs[n]=track; break; } } else break; } for(unsigned k=0; k<pointNN; k++){ distances[k]=0.0; qIndexes[k]=~0; sIndexes[k]=~0; } } // tracks gettimeofday(&tv2, NULL); if(verbosity>1) cerr << endl << "processed tracks :" << processedTracks << " elapsed time:" << ( tv2.tv_sec*1000 + tv2.tv_usec/1000 ) - ( tv1.tv_sec*1000+tv1.tv_usec/1000 ) << " msec" << endl; if(adbQueryResult==0){ if(verbosity>1) cerr<<endl; // Output answer // Loop over nearest neighbours for(k=0; k < min(trackNN,processedTracks); k++) cout << fileTable+trackIDs[k]*O2_FILETABLESIZE << " " << trackDistances[k] << " " << trackQIndexes[k] << " " << trackSIndexes[k] << endl; } else{ // Process Web Services Query int listLen = min(trackNN, processedTracks); adbQueryResult->__sizeRlist=listLen; adbQueryResult->__sizeDist=listLen; adbQueryResult->__sizeQpos=listLen; adbQueryResult->__sizeSpos=listLen; adbQueryResult->Rlist= new char*[listLen]; adbQueryResult->Dist = new double[listLen]; adbQueryResult->Qpos = new int[listLen]; adbQueryResult->Spos = new int[listLen]; for(k=0; k<adbQueryResult->__sizeRlist; k++){ adbQueryResult->Rlist[k]=new char[O2_MAXFILESTR]; adbQueryResult->Dist[k]=trackDistances[k]; adbQueryResult->Qpos[k]=trackQIndexes[k]; adbQueryResult->Spos[k]=trackSIndexes[k]; sprintf(adbQueryResult->Rlist[k], "%s", fileTable+trackIDs[k]*O2_FILETABLESIZE); } } // Clean up if(trackOffsetTable) delete trackOffsetTable; if(queryCopy) delete queryCopy; if(qNorm) delete qNorm; if(timesdata) delete timesdata; if(meanDBdur) delete meanDBdur; } // k nearest-neighbor (k-NN) search between query and target tracks // efficient implementation based on matched filter // assumes normed shingles // outputs distances of retrieved shingles, max retreived = pointNN shingles per per track void audioDB::trackSequenceQueryNN(const char* dbName, const char* inFile, adb__queryResult *adbQueryResult){ initTables(dbName, inFile); // For each input vector, find the closest pointNN matching output vectors and report // we use stdout in this stub version unsigned numVectors = (statbuf.st_size-sizeof(int))/(sizeof(double)*dbH->dim); unsigned numTracks = dbH->numFiles; double* query = (double*)(indata+sizeof(int)); double* data = dataBuf; double* queryCopy = 0; double qMeanL2; double* sMeanL2; unsigned USE_THRESH=0; double SILENCE_THRESH=0; double DIFF_THRESH=0; if(!(dbH->flags & O2_FLAG_L2NORM) ) error("Database must be L2 normed for sequence query","use -l2norm"); if(verbosity>1) cerr << "performing norms ... "; cerr.flush(); unsigned dbVectors = dbH->length/(sizeof(double)*dbH->dim); // Make a copy of the query queryCopy = new double[numVectors*dbH->dim]; memcpy(queryCopy, query, numVectors*dbH->dim*sizeof(double)); qNorm = new double[numVectors]; sNorm = new double[dbVectors]; sMeanL2=new double[dbH->numFiles]; assert(qNorm&&sNorm&&queryCopy&&sMeanL2&&sequenceLength); unitNorm(queryCopy, dbH->dim, numVectors, qNorm); query = queryCopy; // Make norm measurements relative to sequenceLength unsigned w = sequenceLength-1; unsigned i,j; double* ps; double tmp1,tmp2; // Copy the L2 norm values to core to avoid disk random access later on memcpy(sNorm, l2normTable, dbVectors*sizeof(double)); double* snPtr = sNorm; for(i=0; i<dbH->numFiles; i++){ if(trackTable[i]>=sequenceLength){ tmp1=*snPtr; j=1; w=sequenceLength-1; while(w--) *snPtr+=snPtr[j++]; ps = snPtr+1; w=trackTable[i]-sequenceLength; // +1 - 1 while(w--){ tmp2=*ps; *ps=*(ps-1)-tmp1+*(ps+sequenceLength-1); tmp1=tmp2; ps++; } ps = snPtr; w=trackTable[i]-sequenceLength+1; while(w--){ *ps=sqrt(*ps); ps++; } } snPtr+=trackTable[i]; } double* pn = sMeanL2; w=dbH->numFiles; while(w--) *pn++=0.0; ps=sNorm; unsigned processedTracks=0; for(i=0; i<dbH->numFiles; i++){ if(trackTable[i]>sequenceLength-1){ w = trackTable[i]-sequenceLength; pn = sMeanL2+i; *pn=0; while(w--) if(*ps>0) *pn+=*ps++; *pn/=trackTable[i]-sequenceLength; SILENCE_THRESH+=*pn; processedTracks++; } ps = sNorm + trackTable[i]; } if(verbosity>1) cerr << "processedTracks: " << processedTracks << endl; SILENCE_THRESH/=processedTracks; USE_THRESH=1; // Turn thresholding on DIFF_THRESH=SILENCE_THRESH; // mean shingle power SILENCE_THRESH/=5; // 20% of the mean shingle power is SILENCE if(verbosity>4) cerr << "silence thresh: " << SILENCE_THRESH; w=sequenceLength-1; i=1; tmp1=*qNorm; while(w--) *qNorm+=qNorm[i++]; ps = qNorm+1; w=numVectors-sequenceLength; // +1 -1 while(w--){ tmp2=*ps; *ps=*(ps-1)-tmp1+*(ps+sequenceLength-1); tmp1=tmp2; ps++; } ps = qNorm; qMeanL2 = 0; w=numVectors-sequenceLength+1; while(w--){ *ps=sqrt(*ps); qMeanL2+=*ps++; } qMeanL2 /= numVectors-sequenceLength+1; if(verbosity>1) cerr << "done." << endl; if(verbosity>1) cerr << "matching tracks..." << endl; assert(pointNN>0 && pointNN<=O2_MAXNN); assert(trackNN>0 && trackNN<=O2_MAXNN); // Make temporary dynamic memory for results double trackDistances[trackNN]; unsigned trackIDs[trackNN]; unsigned trackQIndexes[trackNN]; unsigned trackSIndexes[trackNN]; double distances[pointNN]; unsigned qIndexes[pointNN]; unsigned sIndexes[pointNN]; unsigned k,l,m,n,track,trackOffset=0, HOP_SIZE=sequenceHop, wL=sequenceLength; double thisDist; double oneOverWL=1.0/wL; for(k=0; k<pointNN; k++){ distances[k]=1.0e6; qIndexes[k]=~0; sIndexes[k]=~0; } for(k=0; k<trackNN; k++){ trackDistances[k]=1.0e6; trackQIndexes[k]=~0; trackSIndexes[k]=~0; trackIDs[k]=~0; } // Timestamp and durations processing double meanQdur = 0; double* timesdata = 0; double* meanDBdur = 0; if(usingTimes && !(dbH->flags & O2_FLAG_TIMES)){ cerr << "warning: ignoring query timestamps for non-timestamped database" << endl; usingTimes=0; } else if(!usingTimes && (dbH->flags & O2_FLAG_TIMES)) cerr << "warning: no timestamps given for query. Ignoring database timestamps." << endl; else if(usingTimes && (dbH->flags & O2_FLAG_TIMES)){ timesdata = new double[numVectors]; assert(timesdata); insertTimeStamps(numVectors, timesFile, timesdata); // Calculate durations of points for(k=0; k<numVectors-1; k++){ timesdata[k]=timesdata[k+1]-timesdata[k]; meanQdur+=timesdata[k]; } meanQdur/=k; if(verbosity>1) cerr << "mean query file duration: " << meanQdur << endl; meanDBdur = new double[dbH->numFiles]; assert(meanDBdur); for(k=0; k<dbH->numFiles; k++){ meanDBdur[k]=0.0; for(j=0; j<trackTable[k]-1 ; j++) meanDBdur[k]+=timesTable[j+1]-timesTable[j]; meanDBdur[k]/=j; } } if(usingQueryPoint) if(queryPoint>numVectors || queryPoint>numVectors-wL+1) error("queryPoint > numVectors-wL+1 in query"); else{ if(verbosity>1) cerr << "query point: " << queryPoint << endl; cerr.flush(); query=query+queryPoint*dbH->dim; qNorm=qNorm+queryPoint; numVectors=wL; } double ** D = 0; // Differences query and target double ** DD = 0; // Matched filter distance D = new double*[numVectors]; assert(D); DD = new double*[numVectors]; assert(DD); gettimeofday(&tv1, NULL); processedTracks=0; unsigned successfulTracks=0; double* qp; double* sp; double* dp; double diffL2; // build track offset table unsigned *trackOffsetTable = new unsigned[dbH->numFiles]; unsigned cumTrack=0; unsigned trackIndexOffset; for(k=0; k<dbH->numFiles;k++){ trackOffsetTable[k]=cumTrack; cumTrack+=trackTable[k]*dbH->dim; } char nextKey [MAXSTR]; // chi^2 statistics double sampleCount = 0; double sampleSum = 0; double logSampleSum = 0; double minSample = 1e9; double maxSample = 0; // Track loop for(processedTracks=0, track=0 ; processedTracks < dbH->numFiles ; track++, processedTracks++){ // get trackID from file if using a control file if(trackFile){ if(!trackFile->eof()){ trackFile->getline(nextKey,MAXSTR); track=getKeyPos(nextKey); } else break; } trackOffset=trackOffsetTable[track]; // numDoubles offset trackIndexOffset=trackOffset/dbH->dim; // numVectors offset if(sequenceLength<trackTable[track]){ // test for short sequences if(verbosity>7) cerr << track << "." << trackIndexOffset << "." << trackTable[track] << " | ";cerr.flush(); // Sum products matrix for(j=0; j<numVectors;j++){ D[j]=new double[trackTable[track]]; assert(D[j]); } // Matched filter matrix for(j=0; j<numVectors;j++){ DD[j]=new double[trackTable[track]]; assert(DD[j]); } double tmp; // Dot product for(j=0; j<numVectors; j++) for(k=0; k<trackTable[track]; k++){ qp=query+j*dbH->dim; sp=dataBuf+trackOffset+k*dbH->dim; DD[j][k]=0.0; // Initialize matched filter array dp=&D[j][k]; // point to correlation cell j,k *dp=0.0; // initialize correlation cell l=dbH->dim; // size of vectors while(l--) *dp+=*qp++**sp++; } // Matched Filter // HOP SIZE == 1 double* spd; if(HOP_SIZE==1){ // HOP_SIZE = shingleHop for(w=0; w<wL; w++) for(j=0; j<numVectors-w; j++){ sp=DD[j]; spd=D[j+w]+w; k=trackTable[track]-w; while(k--) *sp+++=*spd++; } } else{ // HOP_SIZE != 1 for(w=0; w<wL; w++) for(j=0; j<numVectors-w; j+=HOP_SIZE){ sp=DD[j]; spd=D[j+w]+w; for(k=0; k<trackTable[track]-w; k+=HOP_SIZE){ *sp+=*spd; sp+=HOP_SIZE; spd+=HOP_SIZE; } } } if(verbosity>3 && usingTimes){ cerr << "meanQdur=" << meanQdur << " meanDBdur=" << meanDBdur[track] << endl; cerr.flush(); } if(!usingTimes || (usingTimes && fabs(meanDBdur[track]-meanQdur)<meanQdur*timesTol)){ if(verbosity>3 && usingTimes){ cerr << "within duration tolerance." << endl; cerr.flush(); } // Search for minimum distance by shingles (concatenated vectors) for(j=0;j<numVectors-wL;j+=HOP_SIZE) for(k=0;k<trackTable[track]-wL;k+=HOP_SIZE){ thisDist=2-(2/(qNorm[j]*sNorm[trackIndexOffset+k]))*DD[j][k]; if(verbosity>10) cerr << thisDist << " " << qNorm[j] << " " << sNorm[trackIndexOffset+k] << endl; // Gather chi^2 statistics if(thisDist<minSample) minSample=thisDist; else if(thisDist>maxSample) maxSample=thisDist; if(thisDist>1e-9){ sampleCount++; sampleSum+=thisDist; logSampleSum+=log(thisDist); } // diffL2 = fabs(qNorm[j] - sNorm[trackIndexOffset+k]); // Power test if(!USE_THRESH || // Threshold on mean L2 of Q and S sequences (USE_THRESH && qNorm[j]>SILENCE_THRESH && sNorm[trackIndexOffset+k]>SILENCE_THRESH && // Are both query and target windows above mean energy? (qNorm[j]>qMeanL2*.25 && sNorm[trackIndexOffset+k]>sMeanL2[track]*.25))) // && diffL2 < DIFF_THRESH ))) thisDist=thisDist; // Computed above else thisDist=1000000.0; // k-NN match algorithm m=pointNN; while(m--){ if(thisDist<=distances[m]) if(m==0 || thisDist>=distances[m-1]){ // Shuffle distances up the list for(l=pointNN-1; l>m; l--){ distances[l]=distances[l-1]; qIndexes[l]=qIndexes[l-1]; sIndexes[l]=sIndexes[l-1]; } distances[m]=thisDist; if(usingQueryPoint) qIndexes[m]=queryPoint; else qIndexes[m]=j; sIndexes[m]=k; break; } } } // Calculate the mean of the N-Best matches thisDist=0.0; for(m=0; m<pointNN; m++) thisDist+=distances[m]; thisDist/=pointNN; // Let's see the distances then... if(verbosity>3) cerr << fileTable+track*O2_FILETABLESIZE << " " << thisDist << endl; // All the track stuff goes here n=trackNN; while(n--){ if(thisDist<=trackDistances[n]){ if((n==0 || thisDist>=trackDistances[n-1])){ // Copy all values above up the queue for( l=trackNN-1 ; l > n ; l--){ trackDistances[l]=trackDistances[l-1]; trackQIndexes[l]=trackQIndexes[l-1]; trackSIndexes[l]=trackSIndexes[l-1]; trackIDs[l]=trackIDs[l-1]; } trackDistances[n]=thisDist; trackQIndexes[n]=qIndexes[0]; trackSIndexes[n]=sIndexes[0]; successfulTracks++; trackIDs[n]=track; break; } } else break; } } // Duration match // Clean up current track if(D!=NULL){ for(j=0; j<numVectors; j++) delete[] D[j]; } if(DD!=NULL){ for(j=0; j<numVectors; j++) delete[] DD[j]; } } // per-track reset array values for(unsigned k=0; k<pointNN; k++){ distances[k]=1.0e6; qIndexes[k]=~0; sIndexes[k]=~0; } } gettimeofday(&tv2,NULL); if(verbosity>1){ cerr << endl << "processed tracks :" << processedTracks << " matched tracks: " << successfulTracks << " elapsed time:" << ( tv2.tv_sec*1000 + tv2.tv_usec/1000 ) - ( tv1.tv_sec*1000+tv1.tv_usec/1000 ) << " msec" << endl; cerr << "sampleCount: " << sampleCount << " sampleSum: " << sampleSum << " logSampleSum: " << logSampleSum << " minSample: " << minSample << " maxSample: " << maxSample << endl; } if(adbQueryResult==0){ if(verbosity>1) cerr<<endl; // Output answer // Loop over nearest neighbours for(k=0; k < min(trackNN,successfulTracks); k++) cout << fileTable+trackIDs[k]*O2_FILETABLESIZE << " " << trackDistances[k] << " " << trackQIndexes[k] << " " << trackSIndexes[k] << endl; } else{ // Process Web Services Query int listLen = min(trackNN, processedTracks); adbQueryResult->__sizeRlist=listLen; adbQueryResult->__sizeDist=listLen; adbQueryResult->__sizeQpos=listLen; adbQueryResult->__sizeSpos=listLen; adbQueryResult->Rlist= new char*[listLen]; adbQueryResult->Dist = new double[listLen]; adbQueryResult->Qpos = new int[listLen]; adbQueryResult->Spos = new int[listLen]; for(k=0; k<adbQueryResult->__sizeRlist; k++){ adbQueryResult->Rlist[k]=new char[O2_MAXFILESTR]; adbQueryResult->Dist[k]=trackDistances[k]; adbQueryResult->Qpos[k]=trackQIndexes[k]; adbQueryResult->Spos[k]=trackSIndexes[k]; sprintf(adbQueryResult->Rlist[k], "%s", fileTable+trackIDs[k]*O2_FILETABLESIZE); } } // Clean up if(trackOffsetTable) delete[] trackOffsetTable; if(queryCopy) delete[] queryCopy; //if(qNorm) //delete qNorm; if(D) delete[] D; if(DD) delete[] DD; if(timesdata) delete[] timesdata; if(meanDBdur) delete[] meanDBdur; } // Radius search between query and target tracks // efficient implementation based on matched filter // assumes normed shingles // outputs count of retrieved shingles, max retreived = one shingle per query shingle per track void audioDB::trackSequenceQueryRad(const char* dbName, const char* inFile, adb__queryResult *adbQueryResult){ initTables(dbName, inFile); // For each input vector, find the closest pointNN matching output vectors and report // we use stdout in this stub version unsigned numVectors = (statbuf.st_size-sizeof(int))/(sizeof(double)*dbH->dim); unsigned numTracks = dbH->numFiles; double* query = (double*)(indata+sizeof(int)); double* data = dataBuf; double* queryCopy = 0; double qMeanL2; double* sMeanL2; unsigned USE_THRESH=0; double SILENCE_THRESH=0; double DIFF_THRESH=0; if(!(dbH->flags & O2_FLAG_L2NORM) ) error("Database must be L2 normed for sequence query","use -l2norm"); if(verbosity>1) cerr << "performing norms ... "; cerr.flush(); unsigned dbVectors = dbH->length/(sizeof(double)*dbH->dim); // Make a copy of the query queryCopy = new double[numVectors*dbH->dim]; memcpy(queryCopy, query, numVectors*dbH->dim*sizeof(double)); qNorm = new double[numVectors]; sNorm = new double[dbVectors]; sMeanL2=new double[dbH->numFiles]; assert(qNorm&&sNorm&&queryCopy&&sMeanL2&&sequenceLength); unitNorm(queryCopy, dbH->dim, numVectors, qNorm); query = queryCopy; // Make norm measurements relative to sequenceLength unsigned w = sequenceLength-1; unsigned i,j; double* ps; double tmp1,tmp2; // Copy the L2 norm values to core to avoid disk random access later on memcpy(sNorm, l2normTable, dbVectors*sizeof(double)); double* snPtr = sNorm; for(i=0; i<dbH->numFiles; i++){ if(trackTable[i]>=sequenceLength){ tmp1=*snPtr; j=1; w=sequenceLength-1; while(w--) *snPtr+=snPtr[j++]; ps = snPtr+1; w=trackTable[i]-sequenceLength; // +1 - 1 while(w--){ tmp2=*ps; *ps=*(ps-1)-tmp1+*(ps+sequenceLength-1); tmp1=tmp2; ps++; } ps = snPtr; w=trackTable[i]-sequenceLength+1; while(w--){ *ps=sqrt(*ps); ps++; } } snPtr+=trackTable[i]; } double* pn = sMeanL2; w=dbH->numFiles; while(w--) *pn++=0.0; ps=sNorm; unsigned processedTracks=0; for(i=0; i<dbH->numFiles; i++){ if(trackTable[i]>sequenceLength-1){ w = trackTable[i]-sequenceLength; pn = sMeanL2+i; *pn=0; while(w--) if(*ps>0) *pn+=*ps++; *pn/=trackTable[i]-sequenceLength; SILENCE_THRESH+=*pn; processedTracks++; } ps = sNorm + trackTable[i]; } if(verbosity>1) cerr << "processedTracks: " << processedTracks << endl; SILENCE_THRESH/=processedTracks; USE_THRESH=1; // Turn thresholding on DIFF_THRESH=SILENCE_THRESH; // mean shingle power SILENCE_THRESH/=5; // 20% of the mean shingle power is SILENCE if(verbosity>4) cerr << "silence thresh: " << SILENCE_THRESH; w=sequenceLength-1; i=1; tmp1=*qNorm; while(w--) *qNorm+=qNorm[i++]; ps = qNorm+1; w=numVectors-sequenceLength; // +1 -1 while(w--){ tmp2=*ps; *ps=*(ps-1)-tmp1+*(ps+sequenceLength-1); tmp1=tmp2; ps++; } ps = qNorm; qMeanL2 = 0; w=numVectors-sequenceLength+1; while(w--){ *ps=sqrt(*ps); qMeanL2+=*ps++; } qMeanL2 /= numVectors-sequenceLength+1; if(verbosity>1) cerr << "done." << endl; if(verbosity>1) cerr << "matching tracks..." << endl; assert(pointNN>0 && pointNN<=O2_MAXNN); assert(trackNN>0 && trackNN<=O2_MAXNN); // Make temporary dynamic memory for results double trackDistances[trackNN]; unsigned trackIDs[trackNN]; unsigned trackQIndexes[trackNN]; unsigned trackSIndexes[trackNN]; double distances[pointNN]; unsigned qIndexes[pointNN]; unsigned sIndexes[pointNN]; unsigned k,l,m,n,track,trackOffset=0, HOP_SIZE=sequenceHop, wL=sequenceLength; double thisDist; double oneOverWL=1.0/wL; for(k=0; k<pointNN; k++){ distances[k]=0.0; qIndexes[k]=~0; sIndexes[k]=~0; } for(k=0; k<trackNN; k++){ trackDistances[k]=0.0; trackQIndexes[k]=~0; trackSIndexes[k]=~0; trackIDs[k]=~0; } // Timestamp and durations processing double meanQdur = 0; double* timesdata = 0; double* meanDBdur = 0; if(usingTimes && !(dbH->flags & O2_FLAG_TIMES)){ cerr << "warning: ignoring query timestamps for non-timestamped database" << endl; usingTimes=0; } else if(!usingTimes && (dbH->flags & O2_FLAG_TIMES)) cerr << "warning: no timestamps given for query. Ignoring database timestamps." << endl; else if(usingTimes && (dbH->flags & O2_FLAG_TIMES)){ timesdata = new double[numVectors]; assert(timesdata); insertTimeStamps(numVectors, timesFile, timesdata); // Calculate durations of points for(k=0; k<numVectors-1; k++){ timesdata[k]=timesdata[k+1]-timesdata[k]; meanQdur+=timesdata[k]; } meanQdur/=k; if(verbosity>1) cerr << "mean query file duration: " << meanQdur << endl; meanDBdur = new double[dbH->numFiles]; assert(meanDBdur); for(k=0; k<dbH->numFiles; k++){ meanDBdur[k]=0.0; for(j=0; j<trackTable[k]-1 ; j++) meanDBdur[k]+=timesTable[j+1]-timesTable[j]; meanDBdur[k]/=j; } } if(usingQueryPoint) if(queryPoint>numVectors || queryPoint>numVectors-wL+1) error("queryPoint > numVectors-wL+1 in query"); else{ if(verbosity>1) cerr << "query point: " << queryPoint << endl; cerr.flush(); query=query+queryPoint*dbH->dim; qNorm=qNorm+queryPoint; numVectors=wL; } double ** D = 0; // Differences query and target double ** DD = 0; // Matched filter distance D = new double*[numVectors]; assert(D); DD = new double*[numVectors]; assert(DD); gettimeofday(&tv1, NULL); processedTracks=0; unsigned successfulTracks=0; double* qp; double* sp; double* dp; double diffL2; // build track offset table unsigned *trackOffsetTable = new unsigned[dbH->numFiles]; unsigned cumTrack=0; unsigned trackIndexOffset; for(k=0; k<dbH->numFiles;k++){ trackOffsetTable[k]=cumTrack; cumTrack+=trackTable[k]*dbH->dim; } char nextKey [MAXSTR]; // chi^2 statistics double sampleCount = 0; double sampleSum = 0; double logSampleSum = 0; double minSample = 1e9; double maxSample = 0; // Track loop for(processedTracks=0, track=0 ; processedTracks < dbH->numFiles ; track++, processedTracks++){ // get trackID from file if using a control file if(trackFile){ if(!trackFile->eof()){ trackFile->getline(nextKey,MAXSTR); track=getKeyPos(nextKey); } else break; } trackOffset=trackOffsetTable[track]; // numDoubles offset trackIndexOffset=trackOffset/dbH->dim; // numVectors offset if(sequenceLength<trackTable[track]){ // test for short sequences if(verbosity>7) cerr << track << "." << trackIndexOffset << "." << trackTable[track] << " | ";cerr.flush(); // Sum products matrix for(j=0; j<numVectors;j++){ D[j]=new double[trackTable[track]]; assert(D[j]); } // Matched filter matrix for(j=0; j<numVectors;j++){ DD[j]=new double[trackTable[track]]; assert(DD[j]); } double tmp; // Dot product for(j=0; j<numVectors; j++) for(k=0; k<trackTable[track]; k++){ qp=query+j*dbH->dim; sp=dataBuf+trackOffset+k*dbH->dim; DD[j][k]=0.0; // Initialize matched filter array dp=&D[j][k]; // point to correlation cell j,k *dp=0.0; // initialize correlation cell l=dbH->dim; // size of vectors while(l--) *dp+=*qp++**sp++; } // Matched Filter // HOP SIZE == 1 double* spd; if(HOP_SIZE==1){ // HOP_SIZE = shingleHop for(w=0; w<wL; w++) for(j=0; j<numVectors-w; j++){ sp=DD[j]; spd=D[j+w]+w; k=trackTable[track]-w; while(k--) *sp+++=*spd++; } } else{ // HOP_SIZE != 1 for(w=0; w<wL; w++) for(j=0; j<numVectors-w; j+=HOP_SIZE){ sp=DD[j]; spd=D[j+w]+w; for(k=0; k<trackTable[track]-w; k+=HOP_SIZE){ *sp+=*spd; sp+=HOP_SIZE; spd+=HOP_SIZE; } } } if(verbosity>3 && usingTimes){ cerr << "meanQdur=" << meanQdur << " meanDBdur=" << meanDBdur[track] << endl; cerr.flush(); } if(!usingTimes || (usingTimes && fabs(meanDBdur[track]-meanQdur)<meanQdur*timesTol)){ if(verbosity>3 && usingTimes){ cerr << "within duration tolerance." << endl; cerr.flush(); } // Search for minimum distance by shingles (concatenated vectors) for(j=0;j<numVectors-wL;j+=HOP_SIZE) for(k=0;k<trackTable[track]-wL;k+=HOP_SIZE){ thisDist=2-(2/(qNorm[j]*sNorm[trackIndexOffset+k]))*DD[j][k]; if(verbosity>10) cerr << thisDist << " " << qNorm[j] << " " << sNorm[trackIndexOffset+k] << endl; // Gather chi^2 statistics if(thisDist<minSample) minSample=thisDist; else if(thisDist>maxSample) maxSample=thisDist; if(thisDist>1e-9){ sampleCount++; sampleSum+=thisDist; logSampleSum+=log(thisDist); } // diffL2 = fabs(qNorm[j] - sNorm[trackIndexOffset+k]); // Power test if(!USE_THRESH || // Threshold on mean L2 of Q and S sequences (USE_THRESH && qNorm[j]>SILENCE_THRESH && sNorm[trackIndexOffset+k]>SILENCE_THRESH && // Are both query and target windows above mean energy? (qNorm[j]>qMeanL2*.25 && sNorm[trackIndexOffset+k]>sMeanL2[track]*.25))) // && diffL2 < DIFF_THRESH ))) thisDist=thisDist; // Computed above else thisDist=1000000.0; if(thisDist>=0 && thisDist<=radius){ distances[0]++; // increment count break; // only need one track point per query point } } // How many points were below threshold ? thisDist=distances[0]; // Let's see the distances then... if(verbosity>3) cerr << fileTable+track*O2_FILETABLESIZE << " " << thisDist << endl; // All the track stuff goes here n=trackNN; while(n--){ if(thisDist>trackDistances[n]){ if((n==0 || thisDist<=trackDistances[n-1])){ // Copy all values above up the queue for( l=trackNN-1 ; l > n ; l--){ trackDistances[l]=trackDistances[l-1]; trackQIndexes[l]=trackQIndexes[l-1]; trackSIndexes[l]=trackSIndexes[l-1]; trackIDs[l]=trackIDs[l-1]; } trackDistances[n]=thisDist; trackQIndexes[n]=qIndexes[0]; trackSIndexes[n]=sIndexes[0]; successfulTracks++; trackIDs[n]=track; break; } } else break; } } // Duration match // Clean up current track if(D!=NULL){ for(j=0; j<numVectors; j++) delete[] D[j]; } if(DD!=NULL){ for(j=0; j<numVectors; j++) delete[] DD[j]; } } // per-track reset array values for(unsigned k=0; k<pointNN; k++){ distances[k]=0.0; qIndexes[k]=~0; sIndexes[k]=~0; } } gettimeofday(&tv2,NULL); if(verbosity>1){ cerr << endl << "processed tracks :" << processedTracks << " matched tracks: " << successfulTracks << " elapsed time:" << ( tv2.tv_sec*1000 + tv2.tv_usec/1000 ) - ( tv1.tv_sec*1000+tv1.tv_usec/1000 ) << " msec" << endl; cerr << "sampleCount: " << sampleCount << " sampleSum: " << sampleSum << " logSampleSum: " << logSampleSum << " minSample: " << minSample << " maxSample: " << maxSample << endl; } if(adbQueryResult==0){ if(verbosity>1) cerr<<endl; // Output answer // Loop over nearest neighbours for(k=0; k < min(trackNN,successfulTracks); k++) cout << fileTable+trackIDs[k]*O2_FILETABLESIZE << " " << trackDistances[k] << endl; } else{ // Process Web Services Query int listLen = min(trackNN, processedTracks); adbQueryResult->__sizeRlist=listLen; adbQueryResult->__sizeDist=listLen; adbQueryResult->__sizeQpos=listLen; adbQueryResult->__sizeSpos=listLen; adbQueryResult->Rlist= new char*[listLen]; adbQueryResult->Dist = new double[listLen]; adbQueryResult->Qpos = new int[listLen]; adbQueryResult->Spos = new int[listLen]; for(k=0; k<adbQueryResult->__sizeRlist; k++){ adbQueryResult->Rlist[k]=new char[O2_MAXFILESTR]; adbQueryResult->Dist[k]=trackDistances[k]; adbQueryResult->Qpos[k]=trackQIndexes[k]; adbQueryResult->Spos[k]=trackSIndexes[k]; sprintf(adbQueryResult->Rlist[k], "%s", fileTable+trackIDs[k]*O2_FILETABLESIZE); } } // Clean up if(trackOffsetTable) delete[] trackOffsetTable; if(queryCopy) delete[] queryCopy; //if(qNorm) //delete qNorm; if(D) delete[] D; if(DD) delete[] DD; if(timesdata) delete[] timesdata; if(meanDBdur) delete[] meanDBdur; } void audioDB::normalize(double* X, int dim, int n){ unsigned c = n*dim; double minval,maxval,v,*p; p=X; while(c--){ v=*p++; if(v<minval) minval=v; else if(v>maxval) maxval=v; } normalize(X, dim, n, minval, maxval); } void audioDB::normalize(double* X, int dim, int n, double minval, double maxval){ unsigned c = n*dim; double *p; if(maxval==minval) return; maxval=1.0/(maxval-minval); c=n*dim; p=X; while(c--){ *p=(*p-minval)*maxval; p++; } } // Unit norm block of features void audioDB::unitNorm(double* X, unsigned dim, unsigned n, double* qNorm){ unsigned d; double L2, oneOverL2, *p; if(verbosity>2) cerr << "norming " << n << " vectors...";cerr.flush(); while(n--){ p=X; L2=0.0; d=dim; while(d--){ L2+=*p**p; p++; } /* L2=sqrt(L2);*/ if(qNorm) *qNorm++=L2; /* oneOverL2 = 1.0/L2; d=dim; while(d--){ *X*=oneOverL2; X++; */ X+=dim; } if(verbosity>2) cerr << "done..." << endl; } // Unit norm block of features void audioDB::unitNormAndInsertL2(double* X, unsigned dim, unsigned n, unsigned append=0){ unsigned d; double L2, oneOverL2, *p; unsigned nn = n; assert(l2normTable); if( !append && (dbH->flags & O2_FLAG_L2NORM) ) error("Database is already L2 normed", "automatic norm on insert is enabled"); if(verbosity>2) cerr << "norming " << n << " vectors...";cerr.flush(); double* l2buf = new double[n]; double* l2ptr = l2buf; assert(l2buf); assert(X); while(nn--){ p=X; *l2ptr=0.0; d=dim; while(d--){ *l2ptr+=*p**p; p++; } l2ptr++; /* oneOverL2 = 1.0/(*l2ptr++); d=dim; while(d--){ *X*=oneOverL2; X++; } */ X+=dim; } unsigned offset; if(append) offset=dbH->length/(dbH->dim*sizeof(double)); // number of vectors else offset=0; memcpy(l2normTable+offset, l2buf, n*sizeof(double)); if(l2buf) delete[] l2buf; if(verbosity>2) cerr << "done..." << endl; } // Start an audioDB server on the host void audioDB::startServer(){ struct soap soap; int m, s; // master and slave sockets soap_init(&soap); m = soap_bind(&soap, NULL, port, 100); if (m < 0) soap_print_fault(&soap, stderr); else { fprintf(stderr, "Socket connection successful: master socket = %d\n", m); for (int i = 1; ; i++) { s = soap_accept(&soap); if (s < 0) { soap_print_fault(&soap, stderr); break; } fprintf(stderr, "%d: accepted connection from IP=%d.%d.%d.%d socket=%d\n", i, (soap.ip >> 24)&0xFF, (soap.ip >> 16)&0xFF, (soap.ip >> 8)&0xFF, soap.ip&0xFF, s); if (soap_serve(&soap) != SOAP_OK) // process RPC request soap_print_fault(&soap, stderr); // print error fprintf(stderr, "request served\n"); soap_destroy(&soap); // clean up class instances soap_end(&soap); // clean up everything and close socket } } soap_done(&soap); // close master socket and detach environment } // web services // SERVER SIDE int adb__status(struct soap* soap, xsd__string dbName, xsd__int &adbCreateResult){ char* const argv[]={"audioDB",COM_STATUS,dbName}; const unsigned argc = 3; audioDB(argc,argv); adbCreateResult=100; return SOAP_OK; } // Literal translation of command line to web service int adb__query(struct soap* soap, xsd__string dbName, xsd__string qKey, xsd__string keyList, xsd__string timesFileName, xsd__int qType, xsd__int qPos, xsd__int pointNN, xsd__int trackNN, xsd__int seqLen, adb__queryResult &adbQueryResult){ char queryType[256]; for(int k=0; k<256; k++) queryType[k]='\0'; if(qType == O2_FLAG_POINT_QUERY) strncpy(queryType, "point", strlen("point")); else if (qType == O2_FLAG_SEQUENCE_QUERY) strncpy(queryType, "sequence", strlen("sequence")); else if(qType == O2_FLAG_TRACK_QUERY) strncpy(queryType,"track", strlen("track")); else strncpy(queryType, "", strlen("")); if(pointNN==0) pointNN=10; if(trackNN==0) trackNN=10; if(seqLen==0) seqLen=16; char qPosStr[256]; sprintf(qPosStr, "%d", qPos); char pointNNStr[256]; sprintf(pointNNStr,"%d",pointNN); char trackNNStr[256]; sprintf(trackNNStr,"%d",trackNN); char seqLenStr[256]; sprintf(seqLenStr,"%d",seqLen); const char* argv[] ={ "./audioDB", COM_QUERY, queryType, // Need to pass a parameter COM_DATABASE, dbName, COM_FEATURES, qKey, COM_KEYLIST, keyList==0?"":keyList, COM_TIMES, timesFileName==0?"":timesFileName, COM_QPOINT, qPosStr, COM_POINTNN, pointNNStr, COM_TRACKNN, trackNNStr, // Need to pass a parameter COM_SEQLEN, seqLenStr }; const unsigned argc = 19; audioDB(argc, (char* const*)argv, &adbQueryResult); return SOAP_OK; } int main(const unsigned argc, char* const argv[]){ audioDB(argc, argv); }