andrewm@0: /* andrewm@0: This code accompanies the textbook: andrewm@0: andrewm@0: Digital Audio Effects: Theory, Implementation and Application andrewm@0: Joshua D. Reiss and Andrew P. McPherson andrewm@0: andrewm@0: --- andrewm@0: andrewm@0: Phaser: phasing effect using time-varying allpass filters andrewm@0: See textbook Chapter 4: Filter Effects andrewm@0: andrewm@0: Code by Andrew McPherson, Brecht De Man and Joshua Reiss andrewm@0: andrewm@0: --- andrewm@0: andrewm@0: This program is free software: you can redistribute it and/or modify andrewm@0: it under the terms of the GNU General Public License as published by andrewm@0: the Free Software Foundation, either version 3 of the License, or andrewm@0: (at your option) any later version. andrewm@0: andrewm@0: This program is distributed in the hope that it will be useful, andrewm@0: but WITHOUT ANY WARRANTY; without even the implied warranty of andrewm@0: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the andrewm@0: GNU General Public License for more details. andrewm@0: andrewm@0: You should have received a copy of the GNU General Public License andrewm@0: along with this program. If not, see . andrewm@0: */ andrewm@0: andrewm@0: #include "PluginProcessor.h" andrewm@0: #include "PluginEditor.h" andrewm@0: #include andrewm@0: andrewm@0: //============================================================================== andrewm@0: PhaserAudioProcessor::PhaserAudioProcessor() andrewm@0: { andrewm@0: // Set default values: andrewm@0: baseFrequency_ = 200.0; andrewm@0: sweepWidth_ = 2000.0; andrewm@0: depth_ = 1.0; andrewm@0: feedback_ = 0.0; andrewm@0: lfoFrequency_ = 0.5; andrewm@0: waveform_ = kWaveformSine; andrewm@0: stereo_ = 0; andrewm@0: andrewm@0: // Start with no filters (at least until we have some channels) andrewm@0: allpassFilters_ = 0; andrewm@0: filtersPerChannel_ = 4; andrewm@0: totalNumFilters_ = 0; andrewm@0: lastFilterOutputs_ = 0; andrewm@0: numLastFilterOutputs_ = 0; andrewm@0: andrewm@0: lfoPhase_ = 0.0; andrewm@0: inverseSampleRate_ = 1.0/44100.0; andrewm@0: sampleCount_ = 0; andrewm@0: filterUpdateInterval_ = 8; andrewm@0: andrewm@0: lastUIWidth_ = 550; andrewm@0: lastUIHeight_ = 200; andrewm@0: } andrewm@0: andrewm@0: PhaserAudioProcessor::~PhaserAudioProcessor() andrewm@0: { andrewm@0: deallocateFilters(); andrewm@0: } andrewm@0: andrewm@0: //============================================================================== andrewm@0: const String PhaserAudioProcessor::getName() const andrewm@0: { andrewm@0: return JucePlugin_Name; andrewm@0: } andrewm@0: andrewm@0: int PhaserAudioProcessor::getNumParameters() andrewm@0: { andrewm@0: return kNumParameters; andrewm@0: } andrewm@0: andrewm@0: float PhaserAudioProcessor::getParameter (int index) andrewm@0: { andrewm@0: // This method will be called by the host, probably on the audio thread, so andrewm@0: // it's absolutely time-critical. Don't use critical sections or anything andrewm@0: // UI-related, or anything at all that may block in any way! andrewm@0: switch (index) andrewm@0: { andrewm@0: case kBaseFrequencyParam: return baseFrequency_; andrewm@0: case kSweepWidthParam: return sweepWidth_; andrewm@0: case kDepthParam: return depth_; andrewm@0: case kFeedbackParam: return feedback_; andrewm@0: case kLFOFrequencyParam: return lfoFrequency_; andrewm@0: case kFiltersParam: return (float)filtersPerChannel_; andrewm@0: case kWaveformParam: return (float)waveform_; andrewm@0: case kStereoParam: return (float)stereo_; andrewm@0: default: return 0.0f; andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: void PhaserAudioProcessor::setParameter (int index, float newValue) andrewm@0: { andrewm@0: // This method will be called by the host, probably on the audio thread, so andrewm@0: // it's absolutely time-critical. Don't use critical sections or anything andrewm@0: // UI-related, or anything at all that may block in any way! andrewm@0: andrewm@0: switch (index) andrewm@0: { andrewm@0: case kBaseFrequencyParam: andrewm@0: baseFrequency_ = newValue; andrewm@0: break; andrewm@0: case kSweepWidthParam: andrewm@0: sweepWidth_ = newValue; andrewm@0: break; andrewm@0: case kDepthParam: andrewm@0: depth_ = newValue; andrewm@0: break; andrewm@0: case kFeedbackParam: andrewm@0: feedback_ = newValue; andrewm@0: break; andrewm@0: case kLFOFrequencyParam: andrewm@0: lfoFrequency_ = newValue; andrewm@0: break; andrewm@0: case kFiltersParam: andrewm@0: if(filtersPerChannel_ != (int)newValue) { andrewm@0: filtersPerChannel_ = (int)newValue; andrewm@0: reallocateFilters(); andrewm@0: } andrewm@0: break; andrewm@0: case kWaveformParam: andrewm@0: waveform_ = (int)newValue; andrewm@0: break; andrewm@0: case kStereoParam: andrewm@0: stereo_ = (int)newValue; andrewm@0: break; andrewm@0: default: andrewm@0: break; andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: const String PhaserAudioProcessor::getParameterName (int index) andrewm@0: { andrewm@0: switch (index) andrewm@0: { andrewm@0: case kBaseFrequencyParam: return "base frequency"; andrewm@0: case kSweepWidthParam: return "sweep width"; andrewm@0: case kDepthParam: return "depth"; andrewm@0: case kFeedbackParam: return "feedback"; andrewm@0: case kLFOFrequencyParam: return "LFO frequency"; andrewm@0: case kWaveformParam: return "waveform"; andrewm@0: case kStereoParam: return "stereo"; andrewm@0: default: break; andrewm@0: } andrewm@0: andrewm@0: return String::empty; andrewm@0: } andrewm@0: andrewm@0: const String PhaserAudioProcessor::getParameterText (int index) andrewm@0: { andrewm@0: return String (getParameter (index), 2); andrewm@0: } andrewm@0: andrewm@0: const String PhaserAudioProcessor::getInputChannelName (int channelIndex) const andrewm@0: { andrewm@0: return String (channelIndex + 1); andrewm@0: } andrewm@0: andrewm@0: const String PhaserAudioProcessor::getOutputChannelName (int channelIndex) const andrewm@0: { andrewm@0: return String (channelIndex + 1); andrewm@0: } andrewm@0: andrewm@0: bool PhaserAudioProcessor::isInputChannelStereoPair (int index) const andrewm@0: { andrewm@0: return true; andrewm@0: } andrewm@0: andrewm@0: bool PhaserAudioProcessor::isOutputChannelStereoPair (int index) const andrewm@0: { andrewm@0: return true; andrewm@0: } andrewm@0: andrewm@0: bool PhaserAudioProcessor::silenceInProducesSilenceOut() const andrewm@0: { andrewm@0: #if JucePlugin_SilenceInProducesSilenceOut andrewm@0: return true; andrewm@0: #else andrewm@0: return false; andrewm@0: #endif andrewm@0: } andrewm@0: andrewm@0: double PhaserAudioProcessor::getTailLengthSeconds() const andrewm@0: { andrewm@0: return 0.0; andrewm@0: } andrewm@0: andrewm@0: bool PhaserAudioProcessor::acceptsMidi() const andrewm@0: { andrewm@0: #if JucePlugin_WantsMidiInput andrewm@0: return true; andrewm@0: #else andrewm@0: return false; andrewm@0: #endif andrewm@0: } andrewm@0: andrewm@0: bool PhaserAudioProcessor::producesMidi() const andrewm@0: { andrewm@0: #if JucePlugin_ProducesMidiOutput andrewm@0: return true; andrewm@0: #else andrewm@0: return false; andrewm@0: #endif andrewm@0: } andrewm@0: andrewm@0: int PhaserAudioProcessor::getNumPrograms() andrewm@0: { andrewm@0: return 0; andrewm@0: } andrewm@0: andrewm@0: int PhaserAudioProcessor::getCurrentProgram() andrewm@0: { andrewm@0: return 0; andrewm@0: } andrewm@0: andrewm@0: void PhaserAudioProcessor::setCurrentProgram (int index) andrewm@0: { andrewm@0: } andrewm@0: andrewm@0: const String PhaserAudioProcessor::getProgramName (int index) andrewm@0: { andrewm@0: return String::empty; andrewm@0: } andrewm@0: andrewm@0: void PhaserAudioProcessor::changeProgramName (int index, const String& newName) andrewm@0: { andrewm@0: } andrewm@0: andrewm@0: //============================================================================== andrewm@0: void PhaserAudioProcessor::prepareToPlay (double sampleRate, int samplesPerBlock) andrewm@0: { andrewm@0: lfoPhase_ = 0.0; andrewm@0: inverseSampleRate_ = 1.0/sampleRate; andrewm@0: sampleCount_ = 0; andrewm@0: andrewm@0: const ScopedLock sl (lock_); andrewm@0: allocateFilters(); andrewm@0: } andrewm@0: andrewm@0: void PhaserAudioProcessor::releaseResources() andrewm@0: { andrewm@0: const ScopedLock sl (lock_); andrewm@0: deallocateFilters(); andrewm@0: } andrewm@0: andrewm@0: void PhaserAudioProcessor::reset() andrewm@0: { andrewm@0: // Use this method as the place to clear any delay lines, buffers, etc, as it andrewm@0: // means there's been a break in the audio's continuity. andrewm@0: andrewm@0: lfoPhase_ = 0.0; andrewm@0: sampleCount_ = 0; andrewm@0: for(int i = 0; i < numLastFilterOutputs_; i++) andrewm@0: lastFilterOutputs_[i] = 0.0f; andrewm@0: } andrewm@0: andrewm@0: andrewm@0: void PhaserAudioProcessor::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages) andrewm@0: { andrewm@0: const ScopedLock sl (lock_); andrewm@0: andrewm@0: // Helpful information about this block of samples: andrewm@0: const int numInputChannels = getNumInputChannels(); // How many input channels for our effect? andrewm@0: const int numOutputChannels = getNumOutputChannels(); // How many output channels for our effect? andrewm@0: const int numSamples = buffer.getNumSamples(); // How many samples in the buffer for this block? andrewm@0: float ph, channel0EndPhase = lfoPhase_; andrewm@0: unsigned int sc; andrewm@0: andrewm@0: // Go through each channel of audio that's passed in, applying one or more allpass filters andrewm@0: // to each. Each channel will be treated identically in a (non-stereo) phaser, but we have andrewm@0: // to have separate filter objects for each channel since the filters store the last few samples andrewm@0: // passed through them. andrewm@0: andrewm@0: // Filters are stored with all channel 0 filters first, then all channel 1 filters, etc. andrewm@0: andrewm@0: for(int channel = 0; channel < numInputChannels; ++channel) andrewm@0: { andrewm@0: // channelData is an array of length numSamples which contains the audio for one channel b@1: float* channelData = buffer.getWritePointer(channel); andrewm@0: andrewm@0: ph = lfoPhase_; andrewm@0: sc = sampleCount_; andrewm@0: andrewm@0: // For stereo phasing, keep the channels 90 degrees out of phase with each other andrewm@0: if(stereo_ != 0 && channel != 0) andrewm@0: ph = fmodf(ph + 0.25, 1.0); andrewm@0: andrewm@0: for (int sample = 0; sample < numSamples; ++sample) andrewm@0: { andrewm@0: float out = channelData[sample]; andrewm@0: andrewm@0: // If feedback is enabled, include the feedback from the last sample in the andrewm@0: // input of the allpass filter chain. This is actually not accurate to how andrewm@0: // analog phasers work because there is a sample of delay between output and andrewm@0: // input, which adds a further phase shift of up to 180 degrees at half the andrewm@0: // sampling frequency. To truly model an analog phaser with feedback involves andrewm@0: // modelling a delay-free loop, which is beyond the scope of this example. andrewm@0: andrewm@0: if(feedback_ != 0.0 && channel < numLastFilterOutputs_) andrewm@0: out += feedback_ * lastFilterOutputs_[channel]; andrewm@0: andrewm@0: // See OnePoleAllpassFilter.cpp for calculation of coefficients and application andrewm@0: // of filter to audio data. The filter processes the audio buffer in place, andrewm@0: // putting the output sample in place of the input. andrewm@0: andrewm@0: for(int j = 0; j < filtersPerChannel_; ++j) andrewm@0: { andrewm@0: // Safety check andrewm@0: if(channel * filtersPerChannel_ + j >= totalNumFilters_) andrewm@0: continue; andrewm@0: andrewm@0: // First, update the current allpass filter coefficients depending on the parameter andrewm@0: // settings and the LFO phase andrewm@0: andrewm@0: // Recalculating the filter coefficients is much more expensive than calculating andrewm@0: // a sample. Only update the coefficients at a fraction of the sample rate; since andrewm@0: // the LFO moves slowly, the difference won't generally be audible. andrewm@0: if(sc % filterUpdateInterval_ == 0) andrewm@0: { andrewm@0: allpassFilters_[channel * filtersPerChannel_ + j]->makeAllpass(inverseSampleRate_, andrewm@0: baseFrequency_ + sweepWidth_*lfo(ph, waveform_)); andrewm@0: } andrewm@0: out = allpassFilters_[channel * filtersPerChannel_ + j]->processSingleSampleRaw(out); andrewm@0: } andrewm@0: andrewm@0: if(channel < numLastFilterOutputs_) andrewm@0: lastFilterOutputs_[channel] = out; andrewm@0: andrewm@0: // Add the allpass signal to the output, though maintaining constant level andrewm@0: // depth = 0 --> input only ; depth = 1 --> evenly balanced input and output andrewm@0: channelData[sample] = (1.0f-0.5f*depth_)*channelData[sample] + 0.5f*depth_*out; andrewm@0: andrewm@0: // Update the LFO phase, keeping it in the range 0-1 andrewm@0: ph += lfoFrequency_*inverseSampleRate_; andrewm@0: if(ph >= 1.0) andrewm@0: ph -= 1.0; andrewm@0: sc++; andrewm@0: } andrewm@0: andrewm@0: // Use channel 0 only to keep the phase in sync between calls to processBlock() andrewm@0: // Otherwise quadrature phase on multiple channels will create problems. andrewm@0: if(channel == 0) andrewm@0: channel0EndPhase = ph; andrewm@0: } andrewm@0: andrewm@0: lfoPhase_ = channel0EndPhase; andrewm@0: sampleCount_ = sc; andrewm@0: andrewm@0: // Go through the remaining channels. In case we have more outputs andrewm@0: // than inputs, or there aren't enough filters, we'll clear any andrewm@0: // remaining output channels (which could otherwise contain garbage) andrewm@0: for(int channel = numInputChannels; channel < numOutputChannels; ++channel) andrewm@0: { andrewm@0: buffer.clear (channel++, 0, buffer.getNumSamples()); andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: //============================================================================== andrewm@0: bool PhaserAudioProcessor::hasEditor() const andrewm@0: { andrewm@0: return true; // (change this to false if you choose to not supply an editor) andrewm@0: } andrewm@0: andrewm@0: AudioProcessorEditor* PhaserAudioProcessor::createEditor() andrewm@0: { andrewm@0: return new PhaserAudioProcessorEditor (this); andrewm@0: } andrewm@0: andrewm@0: //============================================================================== andrewm@0: void PhaserAudioProcessor::getStateInformation (MemoryBlock& destData) andrewm@0: { andrewm@0: // You should use this method to store your parameters in the memory block. andrewm@0: // You could do that either as raw data, or use the XML or ValueTree classes andrewm@0: // as intermediaries to make it easy to save and load complex data. andrewm@0: andrewm@0: // Create an outer XML element.. andrewm@0: XmlElement xml("C4DMPLUGINSETTINGS"); andrewm@0: andrewm@0: // add some attributes to it.. andrewm@0: xml.setAttribute("uiWidth", lastUIWidth_); andrewm@0: xml.setAttribute("uiHeight", lastUIHeight_); andrewm@0: xml.setAttribute("baseFrequency_", baseFrequency_); andrewm@0: xml.setAttribute("feedback", feedback_); andrewm@0: xml.setAttribute("sweepWidth", sweepWidth_); andrewm@0: xml.setAttribute("depth", depth_); andrewm@0: xml.setAttribute("lfoFrequency", lfoFrequency_); andrewm@0: xml.setAttribute("filtersPerChannel", filtersPerChannel_); andrewm@0: xml.setAttribute("waveform", waveform_); andrewm@0: xml.setAttribute("stereo", stereo_); andrewm@0: andrewm@0: // then use this helper function to stuff it into the binary blob and return it.. andrewm@0: copyXmlToBinary(xml, destData); andrewm@0: } andrewm@0: andrewm@0: void PhaserAudioProcessor::setStateInformation (const void* data, int sizeInBytes) andrewm@0: { andrewm@0: // You should use this method to restore your parameters from this memory block, andrewm@0: // whose contents will have been created by the getStateInformation() call. andrewm@0: andrewm@0: // This getXmlFromBinary() helper function retrieves our XML from the binary blob.. andrewm@0: ScopedPointer xmlState (getXmlFromBinary (data, sizeInBytes)); andrewm@0: andrewm@0: if(xmlState != 0) andrewm@0: { andrewm@0: // make sure that it's actually our type of XML object.. andrewm@0: if(xmlState->hasTagName("C4DMPLUGINSETTINGS")) andrewm@0: { andrewm@0: // ok, now pull out our parameters.. andrewm@0: lastUIWidth_ = xmlState->getIntAttribute("uiWidth", lastUIWidth_); andrewm@0: lastUIHeight_ = xmlState->getIntAttribute("uiHeight", lastUIHeight_); andrewm@0: andrewm@0: baseFrequency_ = (float)xmlState->getDoubleAttribute("baseFrequency", baseFrequency_); andrewm@0: feedback_ = (float)xmlState->getDoubleAttribute("feedback", feedback_); andrewm@0: sweepWidth_ = (float)xmlState->getDoubleAttribute("sweepWidth", sweepWidth_); andrewm@0: depth_ = (float)xmlState->getDoubleAttribute("depth", depth_); andrewm@0: lfoFrequency_ = (float)xmlState->getDoubleAttribute("lfoFrequency", lfoFrequency_); andrewm@0: filtersPerChannel_ = xmlState->getIntAttribute("filtersPerChannel", filtersPerChannel_); andrewm@0: waveform_ = xmlState->getIntAttribute("waveform", waveform_); andrewm@0: stereo_ = xmlState->getIntAttribute("stereo", stereo_); andrewm@0: } andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: //============================================================================== andrewm@0: // Function for calculating LFO waveforms. Phase runs from 0-1, output is scaled andrewm@0: // from 0 to 1 (note: not -1 to 1 as would be typical of sine). andrewm@0: float PhaserAudioProcessor::lfo(float phase, int waveform) andrewm@0: { andrewm@0: switch(waveform) andrewm@0: { andrewm@0: case kWaveformTriangle: andrewm@0: if(phase < 0.25f) andrewm@0: return 0.5f + 2.0f*phase; andrewm@0: else if(phase < 0.75f) andrewm@0: return 1.0f - 2.0f*(phase - 0.25f); andrewm@0: else andrewm@0: return 2.0f*(phase-0.75f); andrewm@0: case kWaveformSquare: andrewm@0: if(phase < 0.5f) andrewm@0: return 1.0f; andrewm@0: else andrewm@0: return 0.0f; andrewm@0: case kWaveformSawtooth: andrewm@0: if(phase < 0.5f) andrewm@0: return 0.5f + phase; andrewm@0: else andrewm@0: return phase - 0.5f; andrewm@0: case kWaveformSine: andrewm@0: default: andrewm@0: return 0.5f + 0.5f*sinf(2.0 * M_PI * phase); andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: void PhaserAudioProcessor::allocateFilters() andrewm@0: { andrewm@0: // Create any filters we need; depends on number of channels and number of andrewm@0: // filters per channel andrewm@0: totalNumFilters_ = getNumInputChannels() * filtersPerChannel_; andrewm@0: if(totalNumFilters_ > 0) { andrewm@0: allpassFilters_ = (OnePoleAllpassFilter**)malloc(totalNumFilters_ * sizeof(OnePoleAllpassFilter*)); andrewm@0: if(allpassFilters_ == 0) andrewm@0: totalNumFilters_ = 0; andrewm@0: else { andrewm@0: for(int i = 0; i < totalNumFilters_; i++) andrewm@0: allpassFilters_[i] = new OnePoleAllpassFilter; andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: numLastFilterOutputs_ = getNumInputChannels(); andrewm@0: lastFilterOutputs_ = (float *)malloc(numLastFilterOutputs_ * sizeof(float)); andrewm@0: for(int i = 0; i < numLastFilterOutputs_; i++) andrewm@0: lastFilterOutputs_[i] = 0.0f; andrewm@0: andrewm@0: // Coefficients of allpass filters will get updated in processBlock() andrewm@0: } andrewm@0: andrewm@0: void PhaserAudioProcessor::deallocateFilters() andrewm@0: { andrewm@0: // Release the filters that were created in prepareToPlay() andrewm@0: andrewm@0: for(int i = 0; i < totalNumFilters_; i++) andrewm@0: delete allpassFilters_[i]; andrewm@0: if(totalNumFilters_ != 0) andrewm@0: free(allpassFilters_); andrewm@0: totalNumFilters_ = 0; andrewm@0: allpassFilters_ = 0; andrewm@0: andrewm@0: if(numLastFilterOutputs_ != 0) andrewm@0: free(lastFilterOutputs_); andrewm@0: numLastFilterOutputs_ = 0; andrewm@0: lastFilterOutputs_ = 0; andrewm@0: } andrewm@0: andrewm@0: // Release and recreate the filters in one atomic operation: andrewm@0: // the ScopedLock will not let the audio thread run between andrewm@0: // release and allocation andrewm@0: void PhaserAudioProcessor::reallocateFilters() andrewm@0: { andrewm@0: const ScopedLock sl (lock_); andrewm@0: deallocateFilters(); andrewm@0: allocateFilters(); andrewm@0: } andrewm@0: andrewm@0: //============================================================================== andrewm@0: // This creates new instances of the plugin.. andrewm@0: AudioProcessor* JUCE_CALLTYPE createPluginFilter() andrewm@0: { andrewm@0: return new PhaserAudioProcessor(); andrewm@0: }