andrewm@0
|
1 /*
|
andrewm@0
|
2 This code accompanies the textbook:
|
andrewm@0
|
3
|
andrewm@0
|
4 Digital Audio Effects: Theory, Implementation and Application
|
andrewm@0
|
5 Joshua D. Reiss and Andrew P. McPherson
|
andrewm@0
|
6
|
andrewm@0
|
7 ---
|
andrewm@0
|
8
|
andrewm@0
|
9 Vibrato: frequency modulation using delay lines
|
andrewm@0
|
10 See textbook Chapter 2: Delay Line Effects
|
andrewm@0
|
11
|
andrewm@0
|
12 Code by Andrew McPherson, Brecht De Man and Joshua Reiss
|
andrewm@0
|
13
|
andrewm@0
|
14 ---
|
andrewm@0
|
15
|
andrewm@0
|
16 This program is free software: you can redistribute it and/or modify
|
andrewm@0
|
17 it under the terms of the GNU General Public License as published by
|
andrewm@0
|
18 the Free Software Foundation, either version 3 of the License, or
|
andrewm@0
|
19 (at your option) any later version.
|
andrewm@0
|
20
|
andrewm@0
|
21 This program is distributed in the hope that it will be useful,
|
andrewm@0
|
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
andrewm@0
|
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
andrewm@0
|
24 GNU General Public License for more details.
|
andrewm@0
|
25
|
andrewm@0
|
26 You should have received a copy of the GNU General Public License
|
andrewm@0
|
27 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
andrewm@0
|
28 */
|
andrewm@0
|
29
|
andrewm@0
|
30 #include "PluginProcessor.h"
|
andrewm@0
|
31 #include "PluginEditor.h"
|
andrewm@0
|
32 #include <math.h>
|
andrewm@0
|
33
|
andrewm@0
|
34 const float VibratoAudioProcessor::kMaximumSweepWidth = 0.05;
|
andrewm@0
|
35
|
andrewm@0
|
36 //==============================================================================
|
andrewm@0
|
37 VibratoAudioProcessor::VibratoAudioProcessor() : delayBuffer_ (2, 1)
|
andrewm@0
|
38 {
|
andrewm@0
|
39 // Set default values:
|
andrewm@0
|
40 sweepWidth_ = .01;
|
andrewm@0
|
41 frequency_ = 2.0;
|
andrewm@0
|
42 waveform_ = kWaveformSine;
|
andrewm@0
|
43 interpolation_ = kInterpolationLinear;
|
andrewm@0
|
44
|
andrewm@0
|
45 delayBufferLength_ = 1;
|
andrewm@0
|
46 lfoPhase_ = 0.0;
|
andrewm@0
|
47 inverseSampleRate_ = 1.0/44100.0;
|
andrewm@0
|
48
|
andrewm@0
|
49 // Start the circular buffer pointer at the beginning
|
andrewm@0
|
50 delayWritePosition_ = 0;
|
andrewm@0
|
51
|
andrewm@0
|
52 lastUIWidth_ = 370;
|
andrewm@0
|
53 lastUIHeight_ = 160;
|
andrewm@0
|
54 }
|
andrewm@0
|
55
|
andrewm@0
|
56 VibratoAudioProcessor::~VibratoAudioProcessor()
|
andrewm@0
|
57 {
|
andrewm@0
|
58 }
|
andrewm@0
|
59
|
andrewm@0
|
60 //==============================================================================
|
andrewm@0
|
61 const String VibratoAudioProcessor::getName() const
|
andrewm@0
|
62 {
|
andrewm@0
|
63 return JucePlugin_Name;
|
andrewm@0
|
64 }
|
andrewm@0
|
65
|
andrewm@0
|
66 int VibratoAudioProcessor::getNumParameters()
|
andrewm@0
|
67 {
|
andrewm@0
|
68 return kNumParameters;
|
andrewm@0
|
69 }
|
andrewm@0
|
70
|
andrewm@0
|
71 float VibratoAudioProcessor::getParameter (int index)
|
andrewm@0
|
72 {
|
andrewm@0
|
73 // This method will be called by the host, probably on the audio thread, so
|
andrewm@0
|
74 // it's absolutely time-critical. Don't use critical sections or anything
|
andrewm@0
|
75 // UI-related, or anything at all that may block in any way!
|
andrewm@0
|
76 switch (index)
|
andrewm@0
|
77 {
|
andrewm@0
|
78 case kSweepWidthParam: return sweepWidth_;
|
andrewm@0
|
79 case kFrequencyParam: return frequency_;
|
andrewm@0
|
80 case kWaveformParam: return (float)waveform_;
|
andrewm@0
|
81 case kInterpolationParam: return (float)interpolation_;
|
andrewm@0
|
82 default: return 0.0f;
|
andrewm@0
|
83 }
|
andrewm@0
|
84 }
|
andrewm@0
|
85
|
andrewm@0
|
86 void VibratoAudioProcessor::setParameter (int index, float newValue)
|
andrewm@0
|
87 {
|
andrewm@0
|
88 // This method will be called by the host, probably on the audio thread, so
|
andrewm@0
|
89 // it's absolutely time-critical. Don't use critical sections or anything
|
andrewm@0
|
90 // UI-related, or anything at all that may block in any way!
|
andrewm@0
|
91
|
andrewm@0
|
92 switch (index)
|
andrewm@0
|
93 {
|
andrewm@0
|
94 case kSweepWidthParam:
|
andrewm@0
|
95 sweepWidth_ = newValue;
|
andrewm@0
|
96 break;
|
andrewm@0
|
97 case kFrequencyParam:
|
andrewm@0
|
98 frequency_ = newValue;
|
andrewm@0
|
99 break;
|
andrewm@0
|
100 case kWaveformParam:
|
andrewm@0
|
101 waveform_ = (int)newValue;
|
andrewm@0
|
102 break;
|
andrewm@0
|
103 case kInterpolationParam:
|
andrewm@0
|
104 interpolation_ = (int)newValue;
|
andrewm@0
|
105 break;
|
andrewm@0
|
106 default:
|
andrewm@0
|
107 break;
|
andrewm@0
|
108 }
|
andrewm@0
|
109 }
|
andrewm@0
|
110
|
andrewm@0
|
111 const String VibratoAudioProcessor::getParameterName (int index)
|
andrewm@0
|
112 {
|
andrewm@0
|
113 switch (index)
|
andrewm@0
|
114 {
|
andrewm@0
|
115 case kSweepWidthParam: return "sweep width";
|
andrewm@0
|
116 case kFrequencyParam: return "frequency";
|
andrewm@0
|
117 case kWaveformParam: return "waveform";
|
andrewm@0
|
118 case kInterpolationParam: return "interpolation";
|
andrewm@0
|
119 default: break;
|
andrewm@0
|
120 }
|
andrewm@0
|
121
|
andrewm@0
|
122 return String::empty;
|
andrewm@0
|
123 }
|
andrewm@0
|
124
|
andrewm@0
|
125 const String VibratoAudioProcessor::getParameterText (int index)
|
andrewm@0
|
126 {
|
andrewm@0
|
127 return String (getParameter (index), 2);
|
andrewm@0
|
128 }
|
andrewm@0
|
129
|
andrewm@0
|
130 const String VibratoAudioProcessor::getInputChannelName (int channelIndex) const
|
andrewm@0
|
131 {
|
andrewm@0
|
132 return String (channelIndex + 1);
|
andrewm@0
|
133 }
|
andrewm@0
|
134
|
andrewm@0
|
135 const String VibratoAudioProcessor::getOutputChannelName (int channelIndex) const
|
andrewm@0
|
136 {
|
andrewm@0
|
137 return String (channelIndex + 1);
|
andrewm@0
|
138 }
|
andrewm@0
|
139
|
andrewm@0
|
140 bool VibratoAudioProcessor::isInputChannelStereoPair (int index) const
|
andrewm@0
|
141 {
|
andrewm@0
|
142 return true;
|
andrewm@0
|
143 }
|
andrewm@0
|
144
|
andrewm@0
|
145 bool VibratoAudioProcessor::isOutputChannelStereoPair (int index) const
|
andrewm@0
|
146 {
|
andrewm@0
|
147 return true;
|
andrewm@0
|
148 }
|
andrewm@0
|
149
|
andrewm@0
|
150 bool VibratoAudioProcessor::silenceInProducesSilenceOut() const
|
andrewm@0
|
151 {
|
andrewm@0
|
152 #if JucePlugin_SilenceInProducesSilenceOut
|
andrewm@0
|
153 return true;
|
andrewm@0
|
154 #else
|
andrewm@0
|
155 return false;
|
andrewm@0
|
156 #endif
|
andrewm@0
|
157 }
|
andrewm@0
|
158
|
andrewm@0
|
159 double VibratoAudioProcessor::getTailLengthSeconds() const
|
andrewm@0
|
160 {
|
andrewm@0
|
161 return 0.0;
|
andrewm@0
|
162 }
|
andrewm@0
|
163
|
andrewm@0
|
164 bool VibratoAudioProcessor::acceptsMidi() const
|
andrewm@0
|
165 {
|
andrewm@0
|
166 #if JucePlugin_WantsMidiInput
|
andrewm@0
|
167 return true;
|
andrewm@0
|
168 #else
|
andrewm@0
|
169 return false;
|
andrewm@0
|
170 #endif
|
andrewm@0
|
171 }
|
andrewm@0
|
172
|
andrewm@0
|
173 bool VibratoAudioProcessor::producesMidi() const
|
andrewm@0
|
174 {
|
andrewm@0
|
175 #if JucePlugin_ProducesMidiOutput
|
andrewm@0
|
176 return true;
|
andrewm@0
|
177 #else
|
andrewm@0
|
178 return false;
|
andrewm@0
|
179 #endif
|
andrewm@0
|
180 }
|
andrewm@0
|
181
|
andrewm@0
|
182 int VibratoAudioProcessor::getNumPrograms()
|
andrewm@0
|
183 {
|
andrewm@0
|
184 return 0;
|
andrewm@0
|
185 }
|
andrewm@0
|
186
|
andrewm@0
|
187 int VibratoAudioProcessor::getCurrentProgram()
|
andrewm@0
|
188 {
|
andrewm@0
|
189 return 0;
|
andrewm@0
|
190 }
|
andrewm@0
|
191
|
andrewm@0
|
192 void VibratoAudioProcessor::setCurrentProgram (int index)
|
andrewm@0
|
193 {
|
andrewm@0
|
194 }
|
andrewm@0
|
195
|
andrewm@0
|
196 const String VibratoAudioProcessor::getProgramName (int index)
|
andrewm@0
|
197 {
|
andrewm@0
|
198 return String::empty;
|
andrewm@0
|
199 }
|
andrewm@0
|
200
|
andrewm@0
|
201 void VibratoAudioProcessor::changeProgramName (int index, const String& newName)
|
andrewm@0
|
202 {
|
andrewm@0
|
203 }
|
andrewm@0
|
204
|
andrewm@0
|
205 //==============================================================================
|
andrewm@0
|
206 void VibratoAudioProcessor::prepareToPlay (double sampleRate, int samplesPerBlock)
|
andrewm@0
|
207 {
|
andrewm@0
|
208 // Allocate and zero the delay buffer (size will depend on current sample rate)
|
andrewm@0
|
209 // Add 3 extra samples to allow cubic interpolation even at maximum delay
|
andrewm@0
|
210 delayBufferLength_ = (int)(kMaximumSweepWidth*sampleRate) + 3;
|
andrewm@0
|
211 delayBuffer_.setSize(2, delayBufferLength_);
|
andrewm@0
|
212 delayBuffer_.clear();
|
andrewm@0
|
213 lfoPhase_ = 0.0;
|
andrewm@0
|
214
|
andrewm@0
|
215 inverseSampleRate_ = 1.0/sampleRate;
|
andrewm@0
|
216 }
|
andrewm@0
|
217
|
andrewm@0
|
218 void VibratoAudioProcessor::releaseResources()
|
andrewm@0
|
219 {
|
andrewm@0
|
220 // When playback stops, you can use this as an opportunity to free up any
|
andrewm@0
|
221 // spare memory, etc.
|
andrewm@0
|
222
|
andrewm@0
|
223 // The delay buffer will stay in memory until the effect is unloaded.
|
andrewm@0
|
224 }
|
andrewm@0
|
225
|
andrewm@0
|
226 void VibratoAudioProcessor::reset()
|
andrewm@0
|
227 {
|
andrewm@0
|
228 // Use this method as the place to clear any delay lines, buffers, etc, as it
|
andrewm@0
|
229 // means there's been a break in the audio's continuity.
|
andrewm@0
|
230
|
andrewm@0
|
231 delayBuffer_.clear();
|
andrewm@0
|
232 }
|
andrewm@0
|
233
|
andrewm@0
|
234
|
andrewm@0
|
235 void VibratoAudioProcessor::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages)
|
andrewm@0
|
236 {
|
andrewm@0
|
237 // Helpful information about this block of samples:
|
andrewm@0
|
238 const int numInputChannels = getNumInputChannels(); // How many input channels for our effect?
|
andrewm@0
|
239 const int numOutputChannels = getNumOutputChannels(); // How many output channels for our effect?
|
andrewm@0
|
240 const int numSamples = buffer.getNumSamples(); // How many samples in the buffer for this block?
|
andrewm@0
|
241
|
andrewm@0
|
242 int channel, dpw; // dpr = delay read pointer; dpw = delay write pointer
|
andrewm@0
|
243 float dpr, currentDelay, ph;
|
andrewm@0
|
244
|
andrewm@0
|
245 // Go through each channel of audio that's passed in. In this example we apply identical
|
andrewm@0
|
246 // effects to each channel, regardless of how many input channels there are. For some effects, like
|
andrewm@0
|
247 // a stereo chorus or panner, you might do something different for each channel.
|
andrewm@0
|
248
|
andrewm@0
|
249 for (channel = 0; channel < numInputChannels; ++channel)
|
andrewm@0
|
250 {
|
andrewm@0
|
251 // channelData is an array of length numSamples which contains the audio for one channel
|
b@1
|
252 float* channelData = buffer.getWritePointer(channel);
|
andrewm@0
|
253
|
andrewm@0
|
254 // delayData is the circular buffer for implementing delay on this channel
|
b@1
|
255 float* delayData = delayBuffer_.getWritePointer (jmin (channel, delayBuffer_.getNumChannels() - 1));
|
andrewm@0
|
256
|
andrewm@0
|
257 // Make a temporary copy of any state variables declared in PluginProcessor.h which need to be
|
andrewm@0
|
258 // maintained between calls to processBlock(). Each channel needs to be processed identically
|
andrewm@0
|
259 // which means that the activity of processing one channel can't affect the state variable for
|
andrewm@0
|
260 // the next channel.
|
andrewm@0
|
261
|
andrewm@0
|
262 dpw = delayWritePosition_;
|
andrewm@0
|
263 ph = lfoPhase_;
|
andrewm@0
|
264
|
andrewm@0
|
265 for (int i = 0; i < numSamples; ++i)
|
andrewm@0
|
266 {
|
andrewm@0
|
267 const float in = channelData[i];
|
andrewm@0
|
268 float interpolatedSample = 0.0;
|
andrewm@0
|
269
|
andrewm@0
|
270 // Recalculate the read pointer position with respect to the write pointer. A more efficient
|
andrewm@0
|
271 // implementation might increment the read pointer based on the derivative of the LFO without
|
andrewm@0
|
272 // running the whole equation again, but this format makes the operation clearer.
|
andrewm@0
|
273
|
andrewm@0
|
274 currentDelay = sweepWidth_*lfo(ph, waveform_);
|
andrewm@0
|
275
|
andrewm@0
|
276 // Subtract 3 samples to the delay pointer to make sure we have enough previously written
|
andrewm@0
|
277 // samples to interpolate with
|
andrewm@0
|
278 dpr = fmodf((float)dpw - (float)(currentDelay * getSampleRate()) + (float)delayBufferLength_ - 3.0,
|
andrewm@0
|
279 (float)delayBufferLength_);
|
andrewm@0
|
280
|
andrewm@0
|
281 // In this example, the output is the input plus the contents of the delay buffer (weighted by delayMix)
|
andrewm@0
|
282 // The last term implements a tremolo (variable amplitude) on the whole thing.
|
andrewm@0
|
283
|
andrewm@0
|
284 if(interpolation_ == kInterpolationLinear)
|
andrewm@0
|
285 {
|
andrewm@0
|
286 // Find the fraction by which the read pointer sits between two
|
andrewm@0
|
287 // samples and use this to adjust weights of the samples
|
andrewm@0
|
288 float fraction = dpr - floorf(dpr);
|
andrewm@0
|
289 int previousSample = (int)floorf(dpr);
|
andrewm@0
|
290 int nextSample = (previousSample + 1) % delayBufferLength_;
|
andrewm@0
|
291 interpolatedSample = fraction*delayData[nextSample]
|
andrewm@0
|
292 + (1.0f-fraction)*delayData[previousSample];
|
andrewm@0
|
293 }
|
andrewm@0
|
294 else if(interpolation_ == kInterpolationCubic)
|
andrewm@0
|
295 {
|
andrewm@0
|
296 // Cubic interpolation will produce cleaner results at the expense
|
andrewm@0
|
297 // of more computation. This code uses the Catmull-Rom variant of
|
andrewm@0
|
298 // cubic interpolation. To reduce the load, calculate a few quantities
|
andrewm@0
|
299 // in advance that will be used several times in the equation:
|
andrewm@0
|
300
|
andrewm@0
|
301 int sample1 = (int)floorf(dpr);
|
andrewm@0
|
302 int sample2 = (sample1 + 1) % delayBufferLength_;
|
andrewm@0
|
303 int sample3 = (sample2 + 1) % delayBufferLength_;
|
andrewm@0
|
304 int sample0 = (sample1 - 1 + delayBufferLength_) % delayBufferLength_;
|
andrewm@0
|
305
|
andrewm@0
|
306 float fraction = dpr - floorf(dpr);
|
andrewm@0
|
307 float frsq = fraction*fraction;
|
andrewm@0
|
308
|
andrewm@0
|
309 float a0 = -0.5f*delayData[sample0] + 1.5f*delayData[sample1]
|
andrewm@0
|
310 - 1.5f*delayData[sample2] + 0.5f*delayData[sample3];
|
andrewm@0
|
311 float a1 = delayData[sample0] - 2.5f*delayData[sample1]
|
andrewm@0
|
312 + 2.0f*delayData[sample2] - 0.5f*delayData[sample3];
|
andrewm@0
|
313 float a2 = -0.5f*delayData[sample0] + 0.5f*delayData[sample2];
|
andrewm@0
|
314 float a3 = delayData[sample1];
|
andrewm@0
|
315
|
andrewm@0
|
316 interpolatedSample = a0*fraction*frsq + a1*frsq + a2*fraction + a3;
|
andrewm@0
|
317 }
|
andrewm@0
|
318 else // Nearest neighbour interpolation
|
andrewm@0
|
319 {
|
andrewm@0
|
320 // Find the nearest input sample by rounding the fractional index to the
|
andrewm@0
|
321 // nearest integer. It's possible this will round it to the end of the buffer,
|
andrewm@0
|
322 // in which case we need to roll it back to the beginning.
|
andrewm@0
|
323 int closestSample = (int)floorf(dpr + 0.5);
|
andrewm@0
|
324 if(closestSample == delayBufferLength_)
|
andrewm@0
|
325 closestSample = 0;
|
andrewm@0
|
326 interpolatedSample = delayData[closestSample];
|
andrewm@0
|
327 }
|
andrewm@0
|
328
|
andrewm@0
|
329 // Store the current information in the delay buffer. With feedback, what we read is
|
andrewm@0
|
330 // included in what gets stored in the buffer, otherwise it's just a simple delay line
|
andrewm@0
|
331 // of the input signal.
|
andrewm@0
|
332
|
andrewm@0
|
333 delayData[dpw] = in;
|
andrewm@0
|
334
|
andrewm@0
|
335 // Increment the write pointer at a constant rate. The read pointer will move at different
|
andrewm@0
|
336 // rates depending on the settings of the LFO, the delay and the sweep width.
|
andrewm@0
|
337
|
andrewm@0
|
338 if (++dpw >= delayBufferLength_)
|
andrewm@0
|
339 dpw = 0;
|
andrewm@0
|
340
|
andrewm@0
|
341 // Store the output sample in the buffer, replacing the input. In the vibrato effect,
|
andrewm@0
|
342 // the delaye sample is the only component of the output (no mixing with the dry signal)
|
andrewm@0
|
343 channelData[i] = interpolatedSample;
|
andrewm@0
|
344
|
andrewm@0
|
345 // Update the LFO phase, keeping it in the range 0-1
|
andrewm@0
|
346 ph += frequency_*inverseSampleRate_;
|
andrewm@0
|
347 if(ph >= 1.0)
|
andrewm@0
|
348 ph -= 1.0;
|
andrewm@0
|
349 }
|
andrewm@0
|
350 }
|
andrewm@0
|
351
|
andrewm@0
|
352 // Having made a local copy of the state variables for each channel, now transfer the result
|
andrewm@0
|
353 // back to the main state variable so they will be preserved for the next call of processBlock()
|
andrewm@0
|
354
|
andrewm@0
|
355 delayWritePosition_ = dpw;
|
andrewm@0
|
356 lfoPhase_ = ph;
|
andrewm@0
|
357
|
andrewm@0
|
358 // In case we have more outputs than inputs, we'll clear any output
|
andrewm@0
|
359 // channels that didn't contain input data, (because these aren't
|
andrewm@0
|
360 // guaranteed to be empty - they may contain garbage).
|
andrewm@0
|
361 for (int i = numInputChannels; i < numOutputChannels; ++i)
|
andrewm@0
|
362 {
|
andrewm@0
|
363 buffer.clear (i, 0, buffer.getNumSamples());
|
andrewm@0
|
364 }
|
andrewm@0
|
365 }
|
andrewm@0
|
366
|
andrewm@0
|
367 //==============================================================================
|
andrewm@0
|
368 bool VibratoAudioProcessor::hasEditor() const
|
andrewm@0
|
369 {
|
andrewm@0
|
370 return true; // (change this to false if you choose to not supply an editor)
|
andrewm@0
|
371 }
|
andrewm@0
|
372
|
andrewm@0
|
373 AudioProcessorEditor* VibratoAudioProcessor::createEditor()
|
andrewm@0
|
374 {
|
andrewm@0
|
375 return new VibratoAudioProcessorEditor (this);
|
andrewm@0
|
376 }
|
andrewm@0
|
377
|
andrewm@0
|
378 //==============================================================================
|
andrewm@0
|
379 void VibratoAudioProcessor::getStateInformation (MemoryBlock& destData)
|
andrewm@0
|
380 {
|
andrewm@0
|
381 // You should use this method to store your parameters in the memory block.
|
andrewm@0
|
382 // You could do that either as raw data, or use the XML or ValueTree classes
|
andrewm@0
|
383 // as intermediaries to make it easy to save and load complex data.
|
andrewm@0
|
384
|
andrewm@0
|
385 // Create an outer XML element..
|
andrewm@0
|
386 XmlElement xml("C4DMPLUGINSETTINGS");
|
andrewm@0
|
387
|
andrewm@0
|
388 // add some attributes to it..
|
andrewm@0
|
389 xml.setAttribute("uiWidth", lastUIWidth_);
|
andrewm@0
|
390 xml.setAttribute("uiHeight", lastUIHeight_);
|
andrewm@0
|
391 xml.setAttribute("sweepWidth", sweepWidth_);
|
andrewm@0
|
392 xml.setAttribute("frequency", frequency_);
|
andrewm@0
|
393 xml.setAttribute("waveform", waveform_);
|
andrewm@0
|
394 xml.setAttribute("interpolation", interpolation_);
|
andrewm@0
|
395
|
andrewm@0
|
396 // then use this helper function to stuff it into the binary blob and return it..
|
andrewm@0
|
397 copyXmlToBinary(xml, destData);
|
andrewm@0
|
398 }
|
andrewm@0
|
399
|
andrewm@0
|
400 void VibratoAudioProcessor::setStateInformation (const void* data, int sizeInBytes)
|
andrewm@0
|
401 {
|
andrewm@0
|
402 // You should use this method to restore your parameters from this memory block,
|
andrewm@0
|
403 // whose contents will have been created by the getStateInformation() call.
|
andrewm@0
|
404
|
andrewm@0
|
405 // This getXmlFromBinary() helper function retrieves our XML from the binary blob..
|
andrewm@0
|
406 ScopedPointer<XmlElement> xmlState (getXmlFromBinary (data, sizeInBytes));
|
andrewm@0
|
407
|
andrewm@0
|
408 if(xmlState != 0)
|
andrewm@0
|
409 {
|
andrewm@0
|
410 // make sure that it's actually our type of XML object..
|
andrewm@0
|
411 if(xmlState->hasTagName("C4DMPLUGINSETTINGS"))
|
andrewm@0
|
412 {
|
andrewm@0
|
413 // ok, now pull out our parameters..
|
andrewm@0
|
414 lastUIWidth_ = xmlState->getIntAttribute("uiWidth", lastUIWidth_);
|
andrewm@0
|
415 lastUIHeight_ = xmlState->getIntAttribute("uiHeight", lastUIHeight_);
|
andrewm@0
|
416
|
andrewm@0
|
417 sweepWidth_ = (float)xmlState->getDoubleAttribute("sweepWidth", sweepWidth_);
|
andrewm@0
|
418 frequency_ = (float)xmlState->getDoubleAttribute("frequency", frequency_);
|
andrewm@0
|
419 waveform_ = xmlState->getIntAttribute("waveform", waveform_);
|
andrewm@0
|
420 interpolation_ = xmlState->getIntAttribute("interpolation", interpolation_);
|
andrewm@0
|
421 }
|
andrewm@0
|
422 }
|
andrewm@0
|
423 }
|
andrewm@0
|
424
|
andrewm@0
|
425 //==============================================================================
|
andrewm@0
|
426 // Function for calculating LFO waveforms. Phase runs from 0-1, output is scaled
|
andrewm@0
|
427 // from 0 to 1 (note: not -1 to 1 as would be typical of sine).
|
andrewm@0
|
428 float VibratoAudioProcessor::lfo(float phase, int waveform)
|
andrewm@0
|
429 {
|
andrewm@0
|
430 switch(waveform)
|
andrewm@0
|
431 {
|
andrewm@0
|
432 case kWaveformTriangle:
|
andrewm@0
|
433 if(phase < 0.25f)
|
andrewm@0
|
434 return 0.5f + 2.0f*phase;
|
andrewm@0
|
435 else if(phase < 0.75f)
|
andrewm@0
|
436 return 1.0f - 2.0f*(phase - 0.25f);
|
andrewm@0
|
437 else
|
andrewm@0
|
438 return 2.0f*(phase-0.75f);
|
andrewm@0
|
439 case kWaveformSquare:
|
andrewm@0
|
440 if(phase < 0.5f)
|
andrewm@0
|
441 return 1.0f;
|
andrewm@0
|
442 else
|
andrewm@0
|
443 return 0.0f;
|
andrewm@0
|
444 case kWaveformSawtooth:
|
andrewm@0
|
445 if(phase < 0.5f)
|
andrewm@0
|
446 return 0.5f + phase;
|
andrewm@0
|
447 else
|
andrewm@0
|
448 return phase - 0.5f;
|
andrewm@0
|
449 case kWaveformInverseSawtooth:
|
andrewm@0
|
450 if(phase < 0.5f)
|
andrewm@0
|
451 return 0.5f - phase;
|
andrewm@0
|
452 else
|
andrewm@0
|
453 return 1.5f - phase;
|
andrewm@0
|
454 case kWaveformSine:
|
andrewm@0
|
455 default:
|
andrewm@0
|
456 return 0.5f + 0.5f*sinf(2.0 * M_PI * phase);
|
andrewm@0
|
457 }
|
andrewm@0
|
458 }
|
andrewm@0
|
459
|
andrewm@0
|
460 //==============================================================================
|
andrewm@0
|
461 // This creates new instances of the plugin..
|
andrewm@0
|
462 AudioProcessor* JUCE_CALLTYPE createPluginFilter()
|
andrewm@0
|
463 {
|
andrewm@0
|
464 return new VibratoAudioProcessor();
|
andrewm@0
|
465 }
|