andrewm@0
|
1 /*
|
andrewm@0
|
2 This code accompanies the textbook:
|
andrewm@0
|
3
|
andrewm@0
|
4 Digital Audio Effects: Theory, Implementation and Application
|
andrewm@0
|
5 Joshua D. Reiss and Andrew P. McPherson
|
andrewm@0
|
6
|
andrewm@0
|
7 ---
|
andrewm@0
|
8
|
andrewm@0
|
9 Robotisation: robot effect using phase vocoder;
|
andrewm@0
|
10 see also whisperisation code in processBlock() below.
|
andrewm@0
|
11
|
andrewm@0
|
12 See textbook Chapter 8: The Phase Vocoder
|
andrewm@0
|
13
|
andrewm@0
|
14 Code by Andrew McPherson, Brecht De Man and Joshua Reiss
|
andrewm@0
|
15
|
andrewm@0
|
16 This code requires the fftw library version 3 to compile:
|
andrewm@0
|
17 http://fftw.org
|
andrewm@0
|
18
|
andrewm@0
|
19 ---
|
andrewm@0
|
20
|
andrewm@0
|
21 This program is free software: you can redistribute it and/or modify
|
andrewm@0
|
22 it under the terms of the GNU General Public License as published by
|
andrewm@0
|
23 the Free Software Foundation, either version 3 of the License, or
|
andrewm@0
|
24 (at your option) any later version.
|
andrewm@0
|
25
|
andrewm@0
|
26 This program is distributed in the hope that it will be useful,
|
andrewm@0
|
27 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
andrewm@0
|
28 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
andrewm@0
|
29 GNU General Public License for more details.
|
andrewm@0
|
30
|
andrewm@0
|
31 You should have received a copy of the GNU General Public License
|
andrewm@0
|
32 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
andrewm@0
|
33 */
|
andrewm@0
|
34
|
andrewm@0
|
35
|
andrewm@0
|
36 #include "PluginProcessor.h"
|
andrewm@0
|
37 #include "PluginEditor.h"
|
andrewm@0
|
38
|
andrewm@0
|
39
|
andrewm@0
|
40 //==============================================================================
|
andrewm@0
|
41 RobotisationAudioProcessor::RobotisationAudioProcessor() : inputBuffer_(2, 1), outputBuffer_(2, 1)
|
andrewm@0
|
42 {
|
andrewm@0
|
43 // Set default values:
|
andrewm@0
|
44 fftSelectedSize_ = 512;
|
andrewm@0
|
45 hopSelectedSize_ = hopActualSize_ = 256;
|
andrewm@0
|
46 windowType_ = kWindowRectangular;
|
andrewm@0
|
47
|
andrewm@0
|
48 fftInitialised_ = false;
|
andrewm@0
|
49 fftActualTransformSize_ = 0;
|
andrewm@0
|
50 inputBufferLength_ = 1;
|
andrewm@0
|
51 outputBufferLength_ = 1;
|
andrewm@0
|
52 inputBufferWritePosition_ = outputBufferWritePosition_ = outputBufferReadPosition_ = 0;
|
andrewm@0
|
53 samplesSinceLastFFT_ = 0;
|
andrewm@0
|
54 windowBuffer_ = 0;
|
andrewm@0
|
55 windowBufferLength_ = 0;
|
andrewm@0
|
56 preparedToPlay_ = false;
|
andrewm@0
|
57 fftScaleFactor_ = 0.0;
|
andrewm@0
|
58
|
andrewm@0
|
59 lastUIWidth_ = 370;
|
andrewm@0
|
60 lastUIHeight_ = 120;
|
andrewm@0
|
61 }
|
andrewm@0
|
62
|
andrewm@0
|
63 RobotisationAudioProcessor::~RobotisationAudioProcessor()
|
andrewm@0
|
64 {
|
andrewm@0
|
65 // Release FFT resources if allocated. This should be handled by
|
andrewm@0
|
66 // releaseResources() but in the event it doesn't happen, this avoids
|
andrewm@0
|
67 // a leak. Harmless to call it twice.
|
andrewm@0
|
68 deinitFFT();
|
andrewm@0
|
69 deinitWindow();
|
andrewm@0
|
70 }
|
andrewm@0
|
71
|
andrewm@0
|
72 //==============================================================================
|
andrewm@0
|
73 const String RobotisationAudioProcessor::getName() const
|
andrewm@0
|
74 {
|
andrewm@0
|
75 return JucePlugin_Name;
|
andrewm@0
|
76 }
|
andrewm@0
|
77
|
andrewm@0
|
78 int RobotisationAudioProcessor::getNumParameters()
|
andrewm@0
|
79 {
|
andrewm@0
|
80 return kNumParameters;
|
andrewm@0
|
81 }
|
andrewm@0
|
82
|
andrewm@0
|
83 float RobotisationAudioProcessor::getParameter (int index)
|
andrewm@0
|
84 {
|
andrewm@0
|
85 // This method will be called by the host, probably on the audio thread, so
|
andrewm@0
|
86 // it's absolutely time-critical. Don't use critical sections or anything
|
andrewm@0
|
87 // UI-related, or anything at all that may block in any way!
|
andrewm@0
|
88 switch (index)
|
andrewm@0
|
89 {
|
andrewm@0
|
90 case kFFTSizeParam: return (float)fftSelectedSize_;
|
andrewm@0
|
91 case kHopSizeParam: return (float)hopSelectedSize_;
|
andrewm@0
|
92 case kWindowTypeParam: return (float)windowType_;
|
andrewm@0
|
93 default: return 0.0f;
|
andrewm@0
|
94 }
|
andrewm@0
|
95 }
|
andrewm@0
|
96
|
andrewm@0
|
97 void RobotisationAudioProcessor::setParameter (int index, float newValue)
|
andrewm@0
|
98 {
|
andrewm@0
|
99 // This method will be called by the host, probably on the audio thread, so
|
andrewm@0
|
100 // it's absolutely time-critical. Don't use critical sections or anything
|
andrewm@0
|
101 // UI-related, or anything at all that may block in any way!
|
andrewm@0
|
102 switch (index)
|
andrewm@0
|
103 {
|
andrewm@0
|
104 case kFFTSizeParam:
|
andrewm@0
|
105 if((int)newValue != fftSelectedSize_)
|
andrewm@0
|
106 {
|
andrewm@0
|
107 fftSelectedSize_ = (int)newValue;
|
andrewm@0
|
108 if(preparedToPlay_)
|
andrewm@0
|
109 {
|
andrewm@0
|
110 // Update settings if currently playing, else wait until prepareToPlay() called
|
andrewm@0
|
111 initFFT(fftSelectedSize_);
|
andrewm@0
|
112 initWindow(fftSelectedSize_, windowType_);
|
andrewm@0
|
113 }
|
andrewm@0
|
114 }
|
andrewm@0
|
115 break;
|
andrewm@0
|
116 case kHopSizeParam:
|
andrewm@0
|
117 hopSelectedSize_ = (int)newValue;
|
andrewm@0
|
118 if(preparedToPlay_)
|
andrewm@0
|
119 updateHopSize();
|
andrewm@0
|
120 break;
|
andrewm@0
|
121 case kWindowTypeParam:
|
andrewm@0
|
122 // Recalculate window if needed
|
andrewm@0
|
123 if((int)newValue != windowType_)
|
andrewm@0
|
124 {
|
andrewm@0
|
125 windowType_ = (int)newValue;
|
andrewm@0
|
126 if(preparedToPlay_)
|
andrewm@0
|
127 initWindow(fftActualTransformSize_, (int)newValue);
|
andrewm@0
|
128 }
|
andrewm@0
|
129 break;
|
andrewm@0
|
130 default:
|
andrewm@0
|
131 break;
|
andrewm@0
|
132 }
|
andrewm@0
|
133 }
|
andrewm@0
|
134
|
andrewm@0
|
135 const String RobotisationAudioProcessor::getParameterName (int index)
|
andrewm@0
|
136 {
|
andrewm@0
|
137 switch (index)
|
andrewm@0
|
138 {
|
andrewm@0
|
139 case kFFTSizeParam: return "FFT size";
|
andrewm@0
|
140 case kHopSizeParam: return "hop size";
|
andrewm@0
|
141 case kWindowTypeParam: return "window type";
|
andrewm@0
|
142 default: break;
|
andrewm@0
|
143 }
|
andrewm@0
|
144
|
andrewm@0
|
145 return String::empty;
|
andrewm@0
|
146 }
|
andrewm@0
|
147
|
andrewm@0
|
148 const String RobotisationAudioProcessor::getParameterText (int index)
|
andrewm@0
|
149 {
|
andrewm@0
|
150 return String (getParameter (index), 2);
|
andrewm@0
|
151 }
|
andrewm@0
|
152
|
andrewm@0
|
153 const String RobotisationAudioProcessor::getInputChannelName (int channelIndex) const
|
andrewm@0
|
154 {
|
andrewm@0
|
155 return String (channelIndex + 1);
|
andrewm@0
|
156 }
|
andrewm@0
|
157
|
andrewm@0
|
158 const String RobotisationAudioProcessor::getOutputChannelName (int channelIndex) const
|
andrewm@0
|
159 {
|
andrewm@0
|
160 return String (channelIndex + 1);
|
andrewm@0
|
161 }
|
andrewm@0
|
162
|
andrewm@0
|
163 bool RobotisationAudioProcessor::isInputChannelStereoPair (int index) const
|
andrewm@0
|
164 {
|
andrewm@0
|
165 return true;
|
andrewm@0
|
166 }
|
andrewm@0
|
167
|
andrewm@0
|
168 bool RobotisationAudioProcessor::isOutputChannelStereoPair (int index) const
|
andrewm@0
|
169 {
|
andrewm@0
|
170 return true;
|
andrewm@0
|
171 }
|
andrewm@0
|
172
|
andrewm@0
|
173 bool RobotisationAudioProcessor::silenceInProducesSilenceOut() const
|
andrewm@0
|
174 {
|
andrewm@0
|
175 #if JucePlugin_SilenceInProducesSilenceOut
|
andrewm@0
|
176 return true;
|
andrewm@0
|
177 #else
|
andrewm@0
|
178 return false;
|
andrewm@0
|
179 #endif
|
andrewm@0
|
180 }
|
andrewm@0
|
181
|
andrewm@0
|
182 double RobotisationAudioProcessor::getTailLengthSeconds() const
|
andrewm@0
|
183 {
|
andrewm@0
|
184 return 0.0;
|
andrewm@0
|
185 }
|
andrewm@0
|
186
|
andrewm@0
|
187 bool RobotisationAudioProcessor::acceptsMidi() const
|
andrewm@0
|
188 {
|
andrewm@0
|
189 #if JucePlugin_WantsMidiInput
|
andrewm@0
|
190 return true;
|
andrewm@0
|
191 #else
|
andrewm@0
|
192 return false;
|
andrewm@0
|
193 #endif
|
andrewm@0
|
194 }
|
andrewm@0
|
195
|
andrewm@0
|
196 bool RobotisationAudioProcessor::producesMidi() const
|
andrewm@0
|
197 {
|
andrewm@0
|
198 #if JucePlugin_ProducesMidiOutput
|
andrewm@0
|
199 return true;
|
andrewm@0
|
200 #else
|
andrewm@0
|
201 return false;
|
andrewm@0
|
202 #endif
|
andrewm@0
|
203 }
|
andrewm@0
|
204
|
andrewm@0
|
205 int RobotisationAudioProcessor::getNumPrograms()
|
andrewm@0
|
206 {
|
andrewm@0
|
207 return 0;
|
andrewm@0
|
208 }
|
andrewm@0
|
209
|
andrewm@0
|
210 int RobotisationAudioProcessor::getCurrentProgram()
|
andrewm@0
|
211 {
|
andrewm@0
|
212 return 0;
|
andrewm@0
|
213 }
|
andrewm@0
|
214
|
andrewm@0
|
215 void RobotisationAudioProcessor::setCurrentProgram (int index)
|
andrewm@0
|
216 {
|
andrewm@0
|
217 }
|
andrewm@0
|
218
|
andrewm@0
|
219 const String RobotisationAudioProcessor::getProgramName (int index)
|
andrewm@0
|
220 {
|
andrewm@0
|
221 return String::empty;
|
andrewm@0
|
222 }
|
andrewm@0
|
223
|
andrewm@0
|
224 void RobotisationAudioProcessor::changeProgramName (int index, const String& newName)
|
andrewm@0
|
225 {
|
andrewm@0
|
226 }
|
andrewm@0
|
227
|
andrewm@0
|
228 //==============================================================================
|
andrewm@0
|
229 void RobotisationAudioProcessor::prepareToPlay (double sampleRate, int samplesPerBlock)
|
andrewm@0
|
230 {
|
andrewm@0
|
231 // Use this method as the place to do any pre-playback
|
andrewm@0
|
232 // initialisation that you need..
|
andrewm@0
|
233
|
andrewm@0
|
234 initFFT(fftSelectedSize_);
|
andrewm@0
|
235 initWindow(fftSelectedSize_, windowType_);
|
andrewm@0
|
236 preparedToPlay_ = true;
|
andrewm@0
|
237 }
|
andrewm@0
|
238
|
andrewm@0
|
239 void RobotisationAudioProcessor::releaseResources()
|
andrewm@0
|
240 {
|
andrewm@0
|
241 // When playback stops, you can use this as an opportunity to free up any
|
andrewm@0
|
242 // spare memory, etc.
|
andrewm@0
|
243
|
andrewm@0
|
244 deinitFFT();
|
andrewm@0
|
245 deinitWindow();
|
andrewm@0
|
246 preparedToPlay_ = false;
|
andrewm@0
|
247 }
|
andrewm@0
|
248
|
andrewm@0
|
249 void RobotisationAudioProcessor::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages)
|
andrewm@0
|
250 {
|
andrewm@0
|
251 // Helpful information about this block of samples:
|
andrewm@0
|
252 const int numInputChannels = getNumInputChannels(); // How many input channels for our effect?
|
andrewm@0
|
253 const int numOutputChannels = getNumOutputChannels(); // How many output channels for our effect?
|
andrewm@0
|
254 const int numSamples = buffer.getNumSamples(); // How many samples in the buffer for this block?
|
andrewm@0
|
255
|
andrewm@0
|
256 int channel, inwritepos, sampsincefft;
|
andrewm@0
|
257 int outreadpos, outwritepos;
|
andrewm@0
|
258
|
andrewm@0
|
259 // Grab the lock that prevents the FFT settings from changing
|
andrewm@0
|
260 fftSpinLock_.enter();
|
andrewm@0
|
261
|
andrewm@0
|
262 // Check that we're initialised and ready to go. If not, set output to 0
|
andrewm@0
|
263 if(!fftInitialised_)
|
andrewm@0
|
264 {
|
andrewm@0
|
265 for (channel = 0; channel < numOutputChannels; ++channel)
|
andrewm@0
|
266 {
|
andrewm@0
|
267 buffer.clear (channel, 0, buffer.getNumSamples());
|
andrewm@0
|
268 }
|
andrewm@0
|
269
|
andrewm@0
|
270 fftSpinLock_.exit();
|
andrewm@0
|
271 return;
|
andrewm@0
|
272 }
|
andrewm@0
|
273
|
andrewm@0
|
274 // Go through each channel of audio that's passed in. Collect the samples in the input
|
andrewm@0
|
275 // buffer. When we've reached the next hop interval, calculate the FFT.
|
andrewm@0
|
276 for (channel = 0; channel < numInputChannels; ++channel)
|
andrewm@0
|
277 {
|
andrewm@0
|
278 // channelData is an array of length numSamples which contains the audio for one channel
|
andrewm@0
|
279 float* channelData = buffer.getSampleData(channel);
|
andrewm@0
|
280
|
andrewm@0
|
281 // inputBufferData is the circular buffer for collecting input samples for the FFT
|
andrewm@0
|
282 float* inputBufferData = inputBuffer_.getSampleData(jmin (channel, inputBuffer_.getNumChannels() - 1));
|
andrewm@0
|
283 float* outputBufferData = outputBuffer_.getSampleData(jmin (channel, inputBuffer_.getNumChannels() - 1));
|
andrewm@0
|
284
|
andrewm@0
|
285 // State variables need to be temporarily cached for each channel. We don't want the
|
andrewm@0
|
286 // operations on one channel to affect the identical behaviour of the next channel
|
andrewm@0
|
287 inwritepos = inputBufferWritePosition_;
|
andrewm@0
|
288 outwritepos = outputBufferWritePosition_;
|
andrewm@0
|
289 outreadpos = outputBufferReadPosition_;
|
andrewm@0
|
290 sampsincefft = samplesSinceLastFFT_;
|
andrewm@0
|
291
|
andrewm@0
|
292 for (int i = 0; i < numSamples; ++i)
|
andrewm@0
|
293 {
|
andrewm@0
|
294 const float in = channelData[i];
|
andrewm@0
|
295
|
andrewm@0
|
296 // Store the next buffered sample in the output. Do this first before anything
|
andrewm@0
|
297 // changes the output buffer-- we will have at least one FFT size worth of data
|
andrewm@0
|
298 // stored and ready to go. Set the result to 0 when finished in preparation for the
|
andrewm@0
|
299 // next overlap/add procedure.
|
andrewm@0
|
300 channelData[i] = outputBufferData[outreadpos];
|
andrewm@0
|
301 outputBufferData[outreadpos] = 0.0;
|
andrewm@0
|
302 if(++outreadpos >= outputBufferLength_)
|
andrewm@0
|
303 outreadpos = 0;
|
andrewm@0
|
304
|
andrewm@0
|
305 // Store the current sample in the input buffer, incrementing the write pointer. Also
|
andrewm@0
|
306 // increment how many samples we've stored since the last transform. If it reaches the
|
andrewm@0
|
307 // hop size, perform an FFT and any frequency-domain processing.
|
andrewm@0
|
308 inputBufferData[inwritepos] = in;
|
andrewm@0
|
309 if (++inwritepos >= inputBufferLength_)
|
andrewm@0
|
310 inwritepos = 0;
|
andrewm@0
|
311 if (++sampsincefft >= hopActualSize_)
|
andrewm@0
|
312 {
|
andrewm@0
|
313 sampsincefft = 0;
|
andrewm@0
|
314
|
andrewm@0
|
315 // Find the index of the starting sample in the buffer. When the buffer length
|
andrewm@0
|
316 // is equal to the transform size, this will be the current write position but
|
andrewm@0
|
317 // this code is more general for larger buffers.
|
andrewm@0
|
318 int inputBufferStartPosition = (inwritepos + inputBufferLength_
|
andrewm@0
|
319 - fftActualTransformSize_) % inputBufferLength_;
|
andrewm@0
|
320
|
andrewm@0
|
321 // Window the buffer and copy it into the FFT input
|
andrewm@0
|
322 int inputBufferIndex = inputBufferStartPosition;
|
andrewm@0
|
323 for(int fftBufferIndex = 0; fftBufferIndex < fftActualTransformSize_; fftBufferIndex++)
|
andrewm@0
|
324 {
|
andrewm@0
|
325 // Set real part to windowed signal; imaginary part to 0.
|
andrewm@0
|
326 fftTimeDomain_[fftBufferIndex][1] = 0.0;
|
andrewm@0
|
327 if(fftBufferIndex >= windowBufferLength_) // Safety check, in case window isn't ready
|
andrewm@0
|
328 fftTimeDomain_[fftBufferIndex][0] = 0.0;
|
andrewm@0
|
329 else
|
andrewm@0
|
330 fftTimeDomain_[fftBufferIndex][0] = windowBuffer_[fftBufferIndex]
|
andrewm@0
|
331 * inputBufferData[inputBufferIndex];
|
andrewm@0
|
332 inputBufferIndex++;
|
andrewm@0
|
333 if(inputBufferIndex >= inputBufferLength_)
|
andrewm@0
|
334 inputBufferIndex = 0;
|
andrewm@0
|
335 }
|
andrewm@0
|
336
|
andrewm@0
|
337 // Perform the FFT on the windowed data, going into the frequency domain.
|
andrewm@0
|
338 // Result will be in fftFrequencyDomain_
|
andrewm@0
|
339 fftw_execute(fftForwardPlan_);
|
andrewm@0
|
340
|
andrewm@0
|
341 // ********** PHASE VOCODER PROCESSING GOES HERE **************
|
andrewm@0
|
342 // This is the place where frequency-domain calculations are made
|
andrewm@0
|
343 // on the transformed signal. Put the result back into fftFrequencyDomain_
|
andrewm@0
|
344 // before transforming back.
|
andrewm@0
|
345 // ************************************************************
|
andrewm@0
|
346
|
andrewm@0
|
347 // Whisperiser
|
andrewm@0
|
348 /*for(int bin = 0; bin <= fftActualTransformSize_ / 2; bin++)
|
andrewm@0
|
349 {
|
andrewm@0
|
350 float amplitude = sqrt(fftFrequencyDomain_[bin][0]*fftFrequencyDomain_[bin][0] +
|
andrewm@0
|
351 fftFrequencyDomain_[bin][1]*fftFrequencyDomain_[bin][1]);
|
andrewm@0
|
352
|
andrewm@0
|
353 // This is what we would use to exactly reconstruct the signal:
|
andrewm@0
|
354 // float phase = atan2(fftFrequencyDomain_[bin][1], fftFrequencyDomain_[bin][0]);
|
andrewm@0
|
355
|
andrewm@0
|
356 // But instead, this is what we use to scramble the phase:
|
andrewm@0
|
357 float phase = 2.0 * M_PI * (float)rand() / (float)RAND_MAX;
|
andrewm@0
|
358
|
andrewm@0
|
359 // Set the phase of each bin to 0. phase = 0 means the signal is entirely
|
andrewm@0
|
360 // positive-real, but the overall amplitude is the same as before.
|
andrewm@0
|
361 fftFrequencyDomain_[bin][0] = amplitude * cos(phase);
|
andrewm@0
|
362 fftFrequencyDomain_[bin][1] = amplitude * sin(phase);
|
andrewm@0
|
363
|
andrewm@0
|
364 // FFTs of real signals are conjugate-symmetric. We need to maintain that symmetry
|
andrewm@0
|
365 // to produce a real output, even as we randomize the phase.
|
andrewm@0
|
366 if(bin > 0 && bin < fftActualTransformSize_ / 2) {
|
andrewm@0
|
367 fftFrequencyDomain_[fftActualTransformSize_ - bin][0] = amplitude * cos(phase);
|
andrewm@0
|
368 fftFrequencyDomain_[fftActualTransformSize_ - bin][1] = - amplitude * sin(phase);
|
andrewm@0
|
369 }
|
andrewm@0
|
370 }*/
|
andrewm@0
|
371
|
andrewm@0
|
372 for(int bin = 0; bin < fftActualTransformSize_; bin++)
|
andrewm@0
|
373 {
|
andrewm@0
|
374 float amplitude = sqrt(fftFrequencyDomain_[bin][0]*fftFrequencyDomain_[bin][0] +
|
andrewm@0
|
375 fftFrequencyDomain_[bin][1]*fftFrequencyDomain_[bin][1]);
|
andrewm@0
|
376
|
andrewm@0
|
377 // Set the phase of each bin to 0. phase = 0 means the signal is entirely
|
andrewm@0
|
378 // positive-real, but the overall amplitude is the same as before.
|
andrewm@0
|
379 fftFrequencyDomain_[bin][0] = amplitude;
|
andrewm@0
|
380 fftFrequencyDomain_[bin][1] = 0.0;
|
andrewm@0
|
381 }
|
andrewm@0
|
382
|
andrewm@0
|
383 // Perform the inverse FFT to get back to the time domain. Result wll be
|
andrewm@0
|
384 // in fftTimeDomain_. If we've done it right (kept the frequency domain
|
andrewm@0
|
385 // symmetric), the time domain resuld should be strictly real allowing us
|
andrewm@0
|
386 // to ignore the imaginary part.
|
andrewm@0
|
387 fftw_execute(fftBackwardPlan_);
|
andrewm@0
|
388
|
andrewm@0
|
389 // Add the result to the output buffer, starting at the current write position
|
andrewm@0
|
390 // (Output buffer will have been zeroed after reading the last time around)
|
andrewm@0
|
391 // Output needs to be scaled by the transform size to get back to original amplitude:
|
andrewm@0
|
392 // this is a property of how fftw is implemented. Scaling will also need to be adjusted
|
andrewm@0
|
393 // based on hop size to get the same output level (smaller hop size produces more overlap
|
andrewm@0
|
394 // and hence higher signal level)
|
andrewm@0
|
395 int outputBufferIndex = outwritepos;
|
andrewm@0
|
396 for(int fftBufferIndex = 0; fftBufferIndex < fftActualTransformSize_; fftBufferIndex++)
|
andrewm@0
|
397 {
|
andrewm@0
|
398 // Reapply the window since phase changes will result in discontinities at the edges
|
andrewm@0
|
399 // of the window
|
andrewm@0
|
400 if(fftBufferIndex < windowBufferLength_)
|
andrewm@0
|
401 outputBufferData[outputBufferIndex] += windowBuffer_[fftBufferIndex] *
|
andrewm@0
|
402 fftTimeDomain_[fftBufferIndex][0] * fftScaleFactor_;
|
andrewm@0
|
403 if(++outputBufferIndex >= outputBufferLength_)
|
andrewm@0
|
404 outputBufferIndex = 0;
|
andrewm@0
|
405 }
|
andrewm@0
|
406
|
andrewm@0
|
407 // Advance the write position within the buffer by the hop size
|
andrewm@0
|
408 outwritepos = (outwritepos + hopActualSize_) % outputBufferLength_;
|
andrewm@0
|
409 }
|
andrewm@0
|
410 }
|
andrewm@0
|
411 }
|
andrewm@0
|
412
|
andrewm@0
|
413 // Having made a local copy of the state variables for each channel, now transfer the result
|
andrewm@0
|
414 // back to the main state variable so they will be preserved for the next call of processBlock()
|
andrewm@0
|
415 inputBufferWritePosition_ = inwritepos;
|
andrewm@0
|
416 outputBufferWritePosition_ = outwritepos;
|
andrewm@0
|
417 outputBufferReadPosition_ = outreadpos;
|
andrewm@0
|
418 samplesSinceLastFFT_ = sampsincefft;
|
andrewm@0
|
419
|
andrewm@0
|
420 // In case we have more outputs than inputs, we'll clear any output
|
andrewm@0
|
421 // channels that didn't contain input data, (because these aren't
|
andrewm@0
|
422 // guaranteed to be empty - they may contain garbage).
|
andrewm@0
|
423 for (int i = numInputChannels; i < numOutputChannels; ++i)
|
andrewm@0
|
424 {
|
andrewm@0
|
425 buffer.clear (i, 0, buffer.getNumSamples());
|
andrewm@0
|
426 }
|
andrewm@0
|
427
|
andrewm@0
|
428 fftSpinLock_.exit();
|
andrewm@0
|
429 }
|
andrewm@0
|
430
|
andrewm@0
|
431 //==============================================================================
|
andrewm@0
|
432 bool RobotisationAudioProcessor::hasEditor() const
|
andrewm@0
|
433 {
|
andrewm@0
|
434 return true; // (change this to false if you choose to not supply an editor)
|
andrewm@0
|
435 }
|
andrewm@0
|
436
|
andrewm@0
|
437 AudioProcessorEditor* RobotisationAudioProcessor::createEditor()
|
andrewm@0
|
438 {
|
andrewm@0
|
439 return new RobotisationAudioProcessorEditor (this);
|
andrewm@0
|
440 }
|
andrewm@0
|
441
|
andrewm@0
|
442 //==============================================================================
|
andrewm@0
|
443 void RobotisationAudioProcessor::getStateInformation (MemoryBlock& destData)
|
andrewm@0
|
444 {
|
andrewm@0
|
445 // You should use this method to store your parameters in the memory block.
|
andrewm@0
|
446 // You could do that either as raw data, or use the XML or ValueTree classes
|
andrewm@0
|
447 // as intermediaries to make it easy to save and load complex data.
|
andrewm@0
|
448
|
andrewm@0
|
449 // Create an outer XML element..
|
andrewm@0
|
450 XmlElement xml("C4DMPLUGINSETTINGS");
|
andrewm@0
|
451
|
andrewm@0
|
452 // add some attributes to it..
|
andrewm@0
|
453 xml.setAttribute("uiWidth", lastUIWidth_);
|
andrewm@0
|
454 xml.setAttribute("uiHeight", lastUIHeight_);
|
andrewm@0
|
455 xml.setAttribute("fftSize", fftSelectedSize_);
|
andrewm@0
|
456 xml.setAttribute("hopSize", hopSelectedSize_);
|
andrewm@0
|
457 xml.setAttribute("windowType", windowType_);
|
andrewm@0
|
458
|
andrewm@0
|
459 // then use this helper function to stuff it into the binary blob and return it..
|
andrewm@0
|
460 copyXmlToBinary(xml, destData);
|
andrewm@0
|
461 }
|
andrewm@0
|
462
|
andrewm@0
|
463 void RobotisationAudioProcessor::setStateInformation (const void* data, int sizeInBytes)
|
andrewm@0
|
464 {
|
andrewm@0
|
465 // You should use this method to restore your parameters from this memory block,
|
andrewm@0
|
466 // whose contents will have been created by the getStateInformation() call.
|
andrewm@0
|
467
|
andrewm@0
|
468 // This getXmlFromBinary() helper function retrieves our XML from the binary blob..
|
andrewm@0
|
469 ScopedPointer<XmlElement> xmlState (getXmlFromBinary (data, sizeInBytes));
|
andrewm@0
|
470
|
andrewm@0
|
471 if(xmlState != 0)
|
andrewm@0
|
472 {
|
andrewm@0
|
473 // make sure that it's actually our type of XML object..
|
andrewm@0
|
474 if(xmlState->hasTagName("C4DMPLUGINSETTINGS"))
|
andrewm@0
|
475 {
|
andrewm@0
|
476 // ok, now pull out our parameters..
|
andrewm@0
|
477 lastUIWidth_ = xmlState->getIntAttribute("uiWidth", lastUIWidth_);
|
andrewm@0
|
478 lastUIHeight_ = xmlState->getIntAttribute("uiHeight", lastUIHeight_);
|
andrewm@0
|
479
|
andrewm@0
|
480 fftSelectedSize_ = (int)xmlState->getDoubleAttribute("fftSize", fftSelectedSize_);
|
andrewm@0
|
481 hopSelectedSize_ = (int)xmlState->getDoubleAttribute("hopSize", hopSelectedSize_);
|
andrewm@0
|
482 windowType_ = (int)xmlState->getDoubleAttribute("windowType", windowType_);
|
andrewm@0
|
483
|
andrewm@0
|
484 if(preparedToPlay_)
|
andrewm@0
|
485 {
|
andrewm@0
|
486 // Update settings if currently playing, else wait until prepareToPlay() called
|
andrewm@0
|
487 initFFT(fftSelectedSize_);
|
andrewm@0
|
488 initWindow(fftSelectedSize_, windowType_);
|
andrewm@0
|
489 }
|
andrewm@0
|
490 }
|
andrewm@0
|
491 }
|
andrewm@0
|
492 }
|
andrewm@0
|
493
|
andrewm@0
|
494 //==============================================================================
|
andrewm@0
|
495 // Initialise the FFT data structures for a given length transform
|
andrewm@0
|
496 void RobotisationAudioProcessor::initFFT(int length)
|
andrewm@0
|
497 {
|
andrewm@0
|
498 if(fftInitialised_)
|
andrewm@0
|
499 deinitFFT();
|
andrewm@0
|
500
|
andrewm@0
|
501 // Save the current length so we know how big our results are later
|
andrewm@0
|
502 fftActualTransformSize_ = length;
|
andrewm@0
|
503
|
andrewm@0
|
504 // Here we allocate the complex-number buffers for the FFT. This uses
|
andrewm@0
|
505 // a convenient wrapper on the more general fftw_malloc()
|
andrewm@0
|
506 fftTimeDomain_ = fftw_alloc_complex(length);
|
andrewm@0
|
507 fftFrequencyDomain_ = fftw_alloc_complex(length);
|
andrewm@0
|
508
|
andrewm@0
|
509 // FFTW_ESTIMATE doesn't necessarily produce the fastest executing code (FFTW_MEASURE
|
andrewm@0
|
510 // will get closer) but it carries a minimum startup cost. FFTW_MEASURE might stall for
|
andrewm@0
|
511 // several seconds which would be annoying in an audio plug-in context.
|
andrewm@0
|
512 fftForwardPlan_ = fftw_plan_dft_1d(fftActualTransformSize_, fftTimeDomain_,
|
andrewm@0
|
513 fftFrequencyDomain_, FFTW_FORWARD, FFTW_ESTIMATE);
|
andrewm@0
|
514 fftBackwardPlan_ = fftw_plan_dft_1d(fftActualTransformSize_, fftFrequencyDomain_,
|
andrewm@0
|
515 fftTimeDomain_, FFTW_BACKWARD, FFTW_ESTIMATE);
|
andrewm@0
|
516
|
andrewm@0
|
517 // Allocate the buffer that the samples will be collected in
|
andrewm@0
|
518 inputBufferLength_ = fftActualTransformSize_;
|
andrewm@0
|
519 inputBuffer_.setSize(2, inputBufferLength_);
|
andrewm@0
|
520 inputBuffer_.clear();
|
andrewm@0
|
521 inputBufferWritePosition_ = 0;
|
andrewm@0
|
522 samplesSinceLastFFT_ = 0;
|
andrewm@0
|
523
|
andrewm@0
|
524 // Allocate the output buffer to be twice the size of the FFT
|
andrewm@0
|
525 // This will be enough for all hop size cases
|
andrewm@0
|
526 outputBufferLength_ = 2*fftActualTransformSize_;
|
andrewm@0
|
527 outputBuffer_.setSize(2, outputBufferLength_);
|
andrewm@0
|
528 outputBuffer_.clear();
|
andrewm@0
|
529 outputBufferReadPosition_ = 0;
|
andrewm@0
|
530
|
andrewm@0
|
531 updateHopSize();
|
andrewm@0
|
532
|
andrewm@0
|
533 fftInitialised_ = true;
|
andrewm@0
|
534 }
|
andrewm@0
|
535
|
andrewm@0
|
536 // Free the FFT data structures
|
andrewm@0
|
537 void RobotisationAudioProcessor::deinitFFT()
|
andrewm@0
|
538 {
|
andrewm@0
|
539 if(!fftInitialised_)
|
andrewm@0
|
540 return;
|
andrewm@0
|
541
|
andrewm@0
|
542 // Prevent this variable from changing while an audio callback is running.
|
andrewm@0
|
543 // Once it has changed, the next audio callback will find that it's not
|
andrewm@0
|
544 // initialised and will return silence instead of attempting to work with the
|
andrewm@0
|
545 // (invalid) FFT structures. This produces an audible glitch but no crash,
|
andrewm@0
|
546 // and is the simplest way to handle parameter changes in this example code.
|
andrewm@0
|
547 fftSpinLock_.enter();
|
andrewm@0
|
548 fftInitialised_ = false;
|
andrewm@0
|
549 fftSpinLock_.exit();
|
andrewm@0
|
550
|
andrewm@0
|
551 fftw_destroy_plan(fftForwardPlan_);
|
andrewm@0
|
552 fftw_destroy_plan(fftBackwardPlan_);
|
andrewm@0
|
553 fftw_free(fftTimeDomain_);
|
andrewm@0
|
554 fftw_free(fftFrequencyDomain_);
|
andrewm@0
|
555
|
andrewm@0
|
556 // Leave the input buffer in memory until the plugin is released
|
andrewm@0
|
557 }
|
andrewm@0
|
558
|
andrewm@0
|
559 //==============================================================================
|
andrewm@0
|
560 // Create a new window of a given length and type
|
andrewm@0
|
561 void RobotisationAudioProcessor::initWindow(int length, int windowType)
|
andrewm@0
|
562 {
|
andrewm@0
|
563 if(windowBuffer_ != 0)
|
andrewm@0
|
564 deinitWindow();
|
andrewm@0
|
565 if(length == 0) // Sanity check
|
andrewm@0
|
566 return;
|
andrewm@0
|
567
|
andrewm@0
|
568 // Allocate memory for the window
|
andrewm@0
|
569 windowBuffer_ = (double *)malloc(length * sizeof(double));
|
andrewm@0
|
570
|
andrewm@0
|
571 // Write the length as a double here to simplify the code below (otherwise
|
andrewm@0
|
572 // typecasts would be wise)
|
andrewm@0
|
573 double windowLength = length;
|
andrewm@0
|
574
|
andrewm@0
|
575 // Set values for the window, depending on its type
|
andrewm@0
|
576 for(int i = 0; i < length; i++)
|
andrewm@0
|
577 {
|
andrewm@0
|
578 // Window functions are typically defined to be symmetrical. This will cause a
|
andrewm@0
|
579 // problem in the overlap-add process: the windows instead need to be periodic
|
andrewm@0
|
580 // when arranged end-to-end. As a result we calculate the window of one sample
|
andrewm@0
|
581 // larger than usual, and drop the last sample. (This works as long as N is even.)
|
andrewm@0
|
582 // See Julius Smith, "Spectral Audio Signal Processing" for details.
|
andrewm@0
|
583 switch(windowType)
|
andrewm@0
|
584 {
|
andrewm@0
|
585 case kWindowBartlett:
|
andrewm@0
|
586 windowBuffer_[i] = (2.0/(windowLength + 2.0))*
|
andrewm@0
|
587 (0.5*(windowLength + 2.0) - abs((double)i - 0.5*windowLength));
|
andrewm@0
|
588 break;
|
andrewm@0
|
589 case kWindowHann:
|
andrewm@0
|
590 windowBuffer_[i] = 0.5*(1.0 - cos(2.0*M_PI*(double)i/windowLength));
|
andrewm@0
|
591 break;
|
andrewm@0
|
592 case kWindowHamming:
|
andrewm@0
|
593 windowBuffer_[i] = 0.54 - 0.46*cos(2.0*M_PI*(double)i/windowLength);
|
andrewm@0
|
594 break;
|
andrewm@0
|
595 case kWindowRectangular:
|
andrewm@0
|
596 default:
|
andrewm@0
|
597 windowBuffer_[i] = 1.0;
|
andrewm@0
|
598 break;
|
andrewm@0
|
599 }
|
andrewm@0
|
600 }
|
andrewm@0
|
601
|
andrewm@0
|
602 windowBufferLength_ = length;
|
andrewm@0
|
603 updateScaleFactor();
|
andrewm@0
|
604 }
|
andrewm@0
|
605
|
andrewm@0
|
606 // Free the window buffer
|
andrewm@0
|
607 void RobotisationAudioProcessor::deinitWindow()
|
andrewm@0
|
608 {
|
andrewm@0
|
609 if(windowBuffer_ == 0)
|
andrewm@0
|
610 return;
|
andrewm@0
|
611
|
andrewm@0
|
612 // Delay clearing the window until the audio thread is not running
|
andrewm@0
|
613 // to avoid a crash if the code tries to access an invalid window
|
andrewm@0
|
614 fftSpinLock_.enter();
|
andrewm@0
|
615 windowBufferLength_ = 0;
|
andrewm@0
|
616 fftSpinLock_.exit();
|
andrewm@0
|
617
|
andrewm@0
|
618 free(windowBuffer_);
|
andrewm@0
|
619 windowBuffer_ = 0;
|
andrewm@0
|
620 }
|
andrewm@0
|
621
|
andrewm@0
|
622 // Update the actual hop size depending on the window size and hop size settings
|
andrewm@0
|
623 // Hop size is expressed as a fraction of a window in the parameters.
|
andrewm@0
|
624 void RobotisationAudioProcessor::updateHopSize()
|
andrewm@0
|
625 {
|
andrewm@0
|
626 hopActualSize_ = hopSelectedSize_;
|
andrewm@0
|
627
|
andrewm@0
|
628 // Update the factor by which samples are scaled to preserve unity gain
|
andrewm@0
|
629 updateScaleFactor();
|
andrewm@0
|
630
|
andrewm@0
|
631 // Read pointer lags the write pointer to allow for FFT buffers to accumulate and
|
andrewm@0
|
632 // be processed. Total latency is sum of the FFT size and the hop size.
|
andrewm@0
|
633 outputBufferWritePosition_ = hopActualSize_ + fftActualTransformSize_;
|
andrewm@0
|
634 }
|
andrewm@0
|
635
|
andrewm@0
|
636 // Update the factor by which each output sample is scaled. This needs to update
|
andrewm@0
|
637 // every time FFT size, hop size, and window type are changed.
|
andrewm@0
|
638 void RobotisationAudioProcessor::updateScaleFactor()
|
andrewm@0
|
639 {
|
andrewm@0
|
640 // The gain needs to be normalised by the sum of the window, which implicitly
|
andrewm@0
|
641 // accounts for the length of the transform and the window type. From there
|
andrewm@0
|
642 // we also update based on hop size: smaller hop means more overlap means the
|
andrewm@0
|
643 // overall gain should be reduced.
|
andrewm@0
|
644 double windowSum = 0.0;
|
andrewm@0
|
645
|
andrewm@0
|
646 for(int i = 0; i < windowBufferLength_; i++)
|
andrewm@0
|
647 {
|
andrewm@0
|
648 windowSum += windowBuffer_[i];
|
andrewm@0
|
649 }
|
andrewm@0
|
650
|
andrewm@0
|
651 if(windowSum == 0.0)
|
andrewm@0
|
652 fftScaleFactor_ = 0.0; // Catch invalid cases and mute output
|
andrewm@0
|
653 else
|
andrewm@0
|
654 {
|
andrewm@0
|
655 fftScaleFactor_ = ((float)hopSelectedSize_/(float)fftActualTransformSize_)/(double)windowSum;
|
andrewm@0
|
656 }
|
andrewm@0
|
657 }
|
andrewm@0
|
658
|
andrewm@0
|
659 //==============================================================================
|
andrewm@0
|
660 // This creates new instances of the plugin..
|
andrewm@0
|
661 AudioProcessor* JUCE_CALLTYPE createPluginFilter()
|
andrewm@0
|
662 {
|
andrewm@0
|
663 return new RobotisationAudioProcessor();
|
andrewm@0
|
664 }
|