andrewm@0
|
1 /*
|
andrewm@0
|
2 This code accompanies the textbook:
|
andrewm@0
|
3
|
andrewm@0
|
4 Digital Audio Effects: Theory, Implementation and Application
|
andrewm@0
|
5 Joshua D. Reiss and Andrew P. McPherson
|
andrewm@0
|
6
|
andrewm@0
|
7 ---
|
andrewm@0
|
8
|
andrewm@0
|
9 Chorus: chorus effect based on time-varying delays
|
andrewm@0
|
10 See textbook Chapter 2: Delay Line Effects
|
andrewm@0
|
11
|
andrewm@0
|
12 Code by Andrew McPherson, Brecht de Man and Joshua Reiss
|
andrewm@0
|
13
|
andrewm@0
|
14 ---
|
andrewm@0
|
15
|
andrewm@0
|
16 This program is free software: you can redistribute it and/or modify
|
andrewm@0
|
17 it under the terms of the GNU General Public License as published by
|
andrewm@0
|
18 the Free Software Foundation, either version 3 of the License, or
|
andrewm@0
|
19 (at your option) any later version.
|
andrewm@0
|
20
|
andrewm@0
|
21 This program is distributed in the hope that it will be useful,
|
andrewm@0
|
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
andrewm@0
|
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
andrewm@0
|
24 GNU General Public License for more details.
|
andrewm@0
|
25
|
andrewm@0
|
26 You should have received a copy of the GNU General Public License
|
andrewm@0
|
27 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
andrewm@0
|
28 */
|
andrewm@0
|
29
|
andrewm@0
|
30 #include "PluginProcessor.h"
|
andrewm@0
|
31 #include "PluginEditor.h"
|
andrewm@0
|
32 #include <math.h>
|
andrewm@0
|
33
|
andrewm@0
|
34 const float ChorusAudioProcessor::kMaximumDelay = 0.05;
|
andrewm@0
|
35 const float ChorusAudioProcessor::kMaximumSweepWidth = 0.05;
|
andrewm@0
|
36
|
andrewm@0
|
37 //==============================================================================
|
andrewm@0
|
38 ChorusAudioProcessor::ChorusAudioProcessor() : delayBuffer_ (2, 1)
|
andrewm@0
|
39 {
|
andrewm@0
|
40 // Set default values:
|
andrewm@0
|
41 delay_ = .03;
|
andrewm@0
|
42 sweepWidth_ = .02;
|
andrewm@0
|
43 depth_ = 1.0;
|
andrewm@0
|
44 frequency_ = 0.2;
|
andrewm@0
|
45 waveform_ = kWaveformSine;
|
andrewm@0
|
46 interpolation_ = kInterpolationLinear;
|
andrewm@0
|
47 numVoices_ = 2;
|
andrewm@0
|
48 stereo_ = 0;
|
andrewm@0
|
49
|
andrewm@0
|
50 delayBufferLength_ = 1;
|
andrewm@0
|
51 lfoPhase_ = 0.0;
|
andrewm@0
|
52 inverseSampleRate_ = 1.0/44100.0;
|
andrewm@0
|
53
|
andrewm@0
|
54 // Start the circular buffer pointer at the beginning
|
andrewm@0
|
55 delayWritePosition_ = 0;
|
andrewm@0
|
56
|
andrewm@0
|
57 lastUIWidth_ = 550;
|
andrewm@0
|
58 lastUIHeight_ = 200;
|
andrewm@0
|
59 }
|
andrewm@0
|
60
|
andrewm@0
|
61 ChorusAudioProcessor::~ChorusAudioProcessor()
|
andrewm@0
|
62 {
|
andrewm@0
|
63 }
|
andrewm@0
|
64
|
andrewm@0
|
65 //==============================================================================
|
andrewm@0
|
66 const String ChorusAudioProcessor::getName() const
|
andrewm@0
|
67 {
|
andrewm@0
|
68 return JucePlugin_Name;
|
andrewm@0
|
69 }
|
andrewm@0
|
70
|
andrewm@0
|
71 int ChorusAudioProcessor::getNumParameters()
|
andrewm@0
|
72 {
|
andrewm@0
|
73 return kNumParameters;
|
andrewm@0
|
74 }
|
andrewm@0
|
75
|
andrewm@0
|
76 float ChorusAudioProcessor::getParameter (int index)
|
andrewm@0
|
77 {
|
andrewm@0
|
78 // This method will be called by the host, probably on the audio thread, so
|
andrewm@0
|
79 // it's absolutely time-critical. Don't use critical sections or anything
|
andrewm@0
|
80 // UI-related, or anything at all that may block in any way!
|
andrewm@0
|
81 switch (index)
|
andrewm@0
|
82 {
|
andrewm@0
|
83 case kDelayParam: return delay_;
|
andrewm@0
|
84 case kSweepWidthParam: return sweepWidth_;
|
andrewm@0
|
85 case kDepthParam: return depth_;
|
andrewm@0
|
86 case kFrequencyParam: return frequency_;
|
andrewm@0
|
87 case kWaveformParam: return (float)waveform_;
|
andrewm@0
|
88 case kInterpolationParam: return (float)interpolation_;
|
andrewm@0
|
89 case kNumVoicesParam: return (float)numVoices_;
|
andrewm@0
|
90 case kStereoParam: return (float)stereo_;
|
andrewm@0
|
91 default: return 0.0f;
|
andrewm@0
|
92 }
|
andrewm@0
|
93 }
|
andrewm@0
|
94
|
andrewm@0
|
95 void ChorusAudioProcessor::setParameter (int index, float newValue)
|
andrewm@0
|
96 {
|
andrewm@0
|
97 // This method will be called by the host, probably on the audio thread, so
|
andrewm@0
|
98 // it's absolutely time-critical. Don't use critical sections or anything
|
andrewm@0
|
99 // UI-related, or anything at all that may block in any way!
|
andrewm@0
|
100
|
andrewm@0
|
101 switch (index)
|
andrewm@0
|
102 {
|
andrewm@0
|
103 case kDelayParam:
|
andrewm@0
|
104 delay_ = newValue;
|
andrewm@0
|
105 break;
|
andrewm@0
|
106 case kSweepWidthParam:
|
andrewm@0
|
107 sweepWidth_ = newValue;
|
andrewm@0
|
108 break;
|
andrewm@0
|
109 case kDepthParam:
|
andrewm@0
|
110 depth_ = newValue;
|
andrewm@0
|
111 break;
|
andrewm@0
|
112 case kFrequencyParam:
|
andrewm@0
|
113 frequency_ = newValue;
|
andrewm@0
|
114 break;
|
andrewm@0
|
115 case kWaveformParam:
|
andrewm@0
|
116 waveform_ = (int)newValue;
|
andrewm@0
|
117 break;
|
andrewm@0
|
118 case kInterpolationParam:
|
andrewm@0
|
119 interpolation_ = (int)newValue;
|
andrewm@0
|
120 break;
|
andrewm@0
|
121 case kNumVoicesParam:
|
andrewm@0
|
122 numVoices_ = (int)newValue;
|
andrewm@0
|
123 break;
|
andrewm@0
|
124 case kStereoParam:
|
andrewm@0
|
125 stereo_ = (int)newValue;
|
andrewm@0
|
126 break;
|
andrewm@0
|
127 default:
|
andrewm@0
|
128 break;
|
andrewm@0
|
129 }
|
andrewm@0
|
130 }
|
andrewm@0
|
131
|
andrewm@0
|
132 const String ChorusAudioProcessor::getParameterName (int index)
|
andrewm@0
|
133 {
|
andrewm@0
|
134 switch (index)
|
andrewm@0
|
135 {
|
andrewm@0
|
136 case kDelayParam: return "delay";
|
andrewm@0
|
137 case kSweepWidthParam: return "sweep width";
|
andrewm@0
|
138 case kDepthParam: return "depth";
|
andrewm@0
|
139 case kFrequencyParam: return "frequency";
|
andrewm@0
|
140 case kWaveformParam: return "waveform";
|
andrewm@0
|
141 case kInterpolationParam: return "interpolation";
|
andrewm@0
|
142 case kNumVoicesParam: return "number of voices";
|
andrewm@0
|
143 case kStereoParam: return "stereo";
|
andrewm@0
|
144 default: break;
|
andrewm@0
|
145 }
|
andrewm@0
|
146
|
andrewm@0
|
147 return String::empty;
|
andrewm@0
|
148 }
|
andrewm@0
|
149
|
andrewm@0
|
150 const String ChorusAudioProcessor::getParameterText (int index)
|
andrewm@0
|
151 {
|
andrewm@0
|
152 return String (getParameter (index), 2);
|
andrewm@0
|
153 }
|
andrewm@0
|
154
|
andrewm@0
|
155 const String ChorusAudioProcessor::getInputChannelName (int channelIndex) const
|
andrewm@0
|
156 {
|
andrewm@0
|
157 return String (channelIndex + 1);
|
andrewm@0
|
158 }
|
andrewm@0
|
159
|
andrewm@0
|
160 const String ChorusAudioProcessor::getOutputChannelName (int channelIndex) const
|
andrewm@0
|
161 {
|
andrewm@0
|
162 return String (channelIndex + 1);
|
andrewm@0
|
163 }
|
andrewm@0
|
164
|
andrewm@0
|
165 bool ChorusAudioProcessor::isInputChannelStereoPair (int index) const
|
andrewm@0
|
166 {
|
andrewm@0
|
167 return true;
|
andrewm@0
|
168 }
|
andrewm@0
|
169
|
andrewm@0
|
170 bool ChorusAudioProcessor::isOutputChannelStereoPair (int index) const
|
andrewm@0
|
171 {
|
andrewm@0
|
172 return true;
|
andrewm@0
|
173 }
|
andrewm@0
|
174
|
andrewm@0
|
175 bool ChorusAudioProcessor::silenceInProducesSilenceOut() const
|
andrewm@0
|
176 {
|
andrewm@0
|
177 #if JucePlugin_SilenceInProducesSilenceOut
|
andrewm@0
|
178 return true;
|
andrewm@0
|
179 #else
|
andrewm@0
|
180 return false;
|
andrewm@0
|
181 #endif
|
andrewm@0
|
182 }
|
andrewm@0
|
183
|
andrewm@0
|
184 double ChorusAudioProcessor::getTailLengthSeconds() const
|
andrewm@0
|
185 {
|
andrewm@0
|
186 return 0.0;
|
andrewm@0
|
187 }
|
andrewm@0
|
188
|
andrewm@0
|
189 bool ChorusAudioProcessor::acceptsMidi() const
|
andrewm@0
|
190 {
|
andrewm@0
|
191 #if JucePlugin_WantsMidiInput
|
andrewm@0
|
192 return true;
|
andrewm@0
|
193 #else
|
andrewm@0
|
194 return false;
|
andrewm@0
|
195 #endif
|
andrewm@0
|
196 }
|
andrewm@0
|
197
|
andrewm@0
|
198 bool ChorusAudioProcessor::producesMidi() const
|
andrewm@0
|
199 {
|
andrewm@0
|
200 #if JucePlugin_ProducesMidiOutput
|
andrewm@0
|
201 return true;
|
andrewm@0
|
202 #else
|
andrewm@0
|
203 return false;
|
andrewm@0
|
204 #endif
|
andrewm@0
|
205 }
|
andrewm@0
|
206
|
andrewm@0
|
207 int ChorusAudioProcessor::getNumPrograms()
|
andrewm@0
|
208 {
|
andrewm@0
|
209 return 0;
|
andrewm@0
|
210 }
|
andrewm@0
|
211
|
andrewm@0
|
212 int ChorusAudioProcessor::getCurrentProgram()
|
andrewm@0
|
213 {
|
andrewm@0
|
214 return 0;
|
andrewm@0
|
215 }
|
andrewm@0
|
216
|
andrewm@0
|
217 void ChorusAudioProcessor::setCurrentProgram (int index)
|
andrewm@0
|
218 {
|
andrewm@0
|
219 }
|
andrewm@0
|
220
|
andrewm@0
|
221 const String ChorusAudioProcessor::getProgramName (int index)
|
andrewm@0
|
222 {
|
andrewm@0
|
223 return String::empty;
|
andrewm@0
|
224 }
|
andrewm@0
|
225
|
andrewm@0
|
226 void ChorusAudioProcessor::changeProgramName (int index, const String& newName)
|
andrewm@0
|
227 {
|
andrewm@0
|
228 }
|
andrewm@0
|
229
|
andrewm@0
|
230 //==============================================================================
|
andrewm@0
|
231 void ChorusAudioProcessor::prepareToPlay (double sampleRate, int samplesPerBlock)
|
andrewm@0
|
232 {
|
andrewm@0
|
233 // Allocate and zero the delay buffer (size will depend on current sample rate)
|
andrewm@0
|
234 // Add 3 extra samples to allow cubic interpolation even at maximum delay
|
andrewm@0
|
235 delayBufferLength_ = (int)((kMaximumDelay + kMaximumSweepWidth)*sampleRate) + 3;
|
andrewm@0
|
236 delayBuffer_.setSize(2, delayBufferLength_);
|
andrewm@0
|
237 delayBuffer_.clear();
|
andrewm@0
|
238 lfoPhase_ = 0.0;
|
andrewm@0
|
239
|
andrewm@0
|
240 inverseSampleRate_ = 1.0/sampleRate;
|
andrewm@0
|
241 }
|
andrewm@0
|
242
|
andrewm@0
|
243 void ChorusAudioProcessor::releaseResources()
|
andrewm@0
|
244 {
|
andrewm@0
|
245 // When playback stops, you can use this as an opportunity to free up any
|
andrewm@0
|
246 // spare memory, etc.
|
andrewm@0
|
247
|
andrewm@0
|
248 // The delay buffer will stay in memory until the effect is unloaded.
|
andrewm@0
|
249 }
|
andrewm@0
|
250
|
andrewm@0
|
251 void ChorusAudioProcessor::reset()
|
andrewm@0
|
252 {
|
andrewm@0
|
253 // Use this method as the place to clear any delay lines, buffers, etc, as it
|
andrewm@0
|
254 // means there's been a break in the audio's continuity.
|
andrewm@0
|
255
|
andrewm@0
|
256 delayBuffer_.clear();
|
andrewm@0
|
257 }
|
andrewm@0
|
258
|
andrewm@0
|
259
|
andrewm@0
|
260 void ChorusAudioProcessor::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages)
|
andrewm@0
|
261 {
|
andrewm@0
|
262 // Helpful information about this block of samples:
|
andrewm@0
|
263 const int numInputChannels = getNumInputChannels(); // How many input channels for our effect?
|
andrewm@0
|
264 const int numOutputChannels = getNumOutputChannels(); // How many output channels for our effect?
|
andrewm@0
|
265 const int numSamples = buffer.getNumSamples(); // How many samples in the buffer for this block?
|
andrewm@0
|
266
|
andrewm@0
|
267 int channel, dpw; // dpr = delay read pointer; dpw = delay write pointer
|
andrewm@0
|
268 float dpr, currentDelay, ph;
|
andrewm@0
|
269
|
andrewm@0
|
270 // Go through each channel of audio that's passed in. In this example we apply identical
|
andrewm@0
|
271 // effects to each channel, regardless of how many input channels there are. For some effects, like
|
andrewm@0
|
272 // a stereo chorus or panner, you might do something different for each channel.
|
andrewm@0
|
273
|
andrewm@0
|
274 for (channel = 0; channel < numInputChannels; ++channel)
|
andrewm@0
|
275 {
|
andrewm@0
|
276 // channelData is an array of length numSamples which contains the audio for one channel
|
b@1
|
277 float* channelData = buffer.getWritePointer(channel);
|
andrewm@0
|
278
|
andrewm@0
|
279 // delayData is the circular buffer for implementing delay on this channel
|
b@1
|
280 float* delayData = delayBuffer_.getWritePointer (jmin (channel, delayBuffer_.getNumChannels() - 1));
|
andrewm@0
|
281
|
andrewm@0
|
282 // Make a temporary copy of any state variables declared in PluginProcessor.h which need to be
|
andrewm@0
|
283 // maintained between calls to processBlock(). Each channel needs to be processed identically
|
andrewm@0
|
284 // which means that the activity of processing one channel can't affect the state variable for
|
andrewm@0
|
285 // the next channel.
|
andrewm@0
|
286
|
andrewm@0
|
287 dpw = delayWritePosition_;
|
andrewm@0
|
288 ph = lfoPhase_;
|
andrewm@0
|
289
|
andrewm@0
|
290 for (int i = 0; i < numSamples; ++i)
|
andrewm@0
|
291 {
|
andrewm@0
|
292 const float in = channelData[i];
|
andrewm@0
|
293 float interpolatedSample = 0.0;
|
andrewm@0
|
294 float phaseOffset = 0.0;
|
andrewm@0
|
295 float weight;
|
andrewm@0
|
296
|
andrewm@0
|
297 // Chorus can have more than 2 voices (where the original, undelayed signal counts as a voice).
|
andrewm@0
|
298 // In this implementation, all voices use the same LFO, but with different phase offsets. It
|
andrewm@0
|
299 // is also possible to use different waveforms and different frequencies for each voice.
|
andrewm@0
|
300
|
andrewm@0
|
301 for(int j = 0; j < numVoices_ - 1; ++j)
|
andrewm@0
|
302 {
|
andrewm@0
|
303 if(stereo_ != 0 && numVoices_ > 2)
|
andrewm@0
|
304 {
|
andrewm@0
|
305 // A stereo chorus pans each voice to a different location in the stereo field.
|
andrewm@0
|
306 // How this is done depends on the number of voices:
|
andrewm@0
|
307 // -- 2 voices: N/A (need at least 2 delayed voices for stereo chorus)
|
andrewm@0
|
308 // -- 3 voices: 1 voice left, 1 voice right (0, 1)
|
andrewm@0
|
309 // -- 4 voices: 1 voice left, 1 voice centre, 1 voice right (0, 0.5, 1)
|
andrewm@0
|
310 // -- 5 voices: 1 voice left, 1 voice left-centre,
|
andrewm@0
|
311 // 1 voice right-centre, 1 voice right (0, 0.33, 0.66, 1)
|
andrewm@0
|
312
|
andrewm@0
|
313 weight = (float)j/(float)(numVoices_ - 2);
|
andrewm@0
|
314
|
andrewm@0
|
315 // Left and right channels are mirrors of each other in weight
|
andrewm@0
|
316 if(channel != 0)
|
andrewm@0
|
317 weight = 1.0 - weight;
|
andrewm@0
|
318 }
|
andrewm@0
|
319 else
|
andrewm@0
|
320 weight = 1.0;
|
andrewm@0
|
321
|
andrewm@0
|
322 // Add the voice to the mix if it has nonzero weight
|
andrewm@0
|
323 if(weight != 0.0)
|
andrewm@0
|
324 {
|
andrewm@0
|
325 // Recalculate the read pointer position with respect to the write pointer. A more efficient
|
andrewm@0
|
326 // implementation might increment the read pointer based on the derivative of the LFO without
|
andrewm@0
|
327 // running the whole equation again, but this format makes the operation clearer.
|
andrewm@0
|
328
|
andrewm@0
|
329 currentDelay = delay_ + sweepWidth_*lfo(fmodf(ph + phaseOffset, 1.0f), waveform_);
|
andrewm@0
|
330 dpr = fmodf((float)dpw - (float)(currentDelay * getSampleRate()) + (float)delayBufferLength_,
|
andrewm@0
|
331 (float)delayBufferLength_);
|
andrewm@0
|
332
|
andrewm@0
|
333 // In this example, the output is the input plus the contents of the delay buffer (weighted by delayMix)
|
andrewm@0
|
334 // The last term implements a tremolo (variable amplitude) on the whole thing.
|
andrewm@0
|
335
|
andrewm@0
|
336 if(interpolation_ == kInterpolationLinear)
|
andrewm@0
|
337 {
|
andrewm@0
|
338 // Find the fraction by which the read pointer sits between two
|
andrewm@0
|
339 // samples and use this to adjust weights of the samples
|
andrewm@0
|
340 float fraction = dpr - floorf(dpr);
|
andrewm@0
|
341 int previousSample = (int)floorf(dpr);
|
andrewm@0
|
342 int nextSample = (previousSample + 1) % delayBufferLength_;
|
andrewm@0
|
343 interpolatedSample = fraction*delayData[nextSample]
|
andrewm@0
|
344 + (1.0f-fraction)*delayData[previousSample];
|
andrewm@0
|
345 }
|
andrewm@0
|
346 else if(interpolation_ == kInterpolationCubic)
|
andrewm@0
|
347 {
|
andrewm@0
|
348 // Cubic interpolation will produce cleaner results at the expense
|
andrewm@0
|
349 // of more computation. This code uses the Catmull-Rom variant of
|
andrewm@0
|
350 // cubic interpolation. To reduce the load, calculate a few quantities
|
andrewm@0
|
351 // in advance that will be used several times in the equation:
|
andrewm@0
|
352
|
andrewm@0
|
353 int sample1 = (int)floorf(dpr);
|
andrewm@0
|
354 int sample2 = (sample1 + 1) % delayBufferLength_;
|
andrewm@0
|
355 int sample3 = (sample2 + 1) % delayBufferLength_;
|
andrewm@0
|
356 int sample0 = (sample1 - 1 + delayBufferLength_) % delayBufferLength_;
|
andrewm@0
|
357
|
andrewm@0
|
358 float fraction = dpr - floorf(dpr);
|
andrewm@0
|
359 float frsq = fraction*fraction;
|
andrewm@0
|
360
|
andrewm@0
|
361 float a0 = -0.5f*delayData[sample0] + 1.5f*delayData[sample1]
|
andrewm@0
|
362 - 1.5f*delayData[sample2] + 0.5f*delayData[sample3];
|
andrewm@0
|
363 float a1 = delayData[sample0] - 2.5f*delayData[sample1]
|
andrewm@0
|
364 + 2.0f*delayData[sample2] - 0.5f*delayData[sample3];
|
andrewm@0
|
365 float a2 = -0.5f*delayData[sample0] + 0.5f*delayData[sample2];
|
andrewm@0
|
366 float a3 = delayData[sample1];
|
andrewm@0
|
367
|
andrewm@0
|
368 interpolatedSample = a0*fraction*frsq + a1*frsq + a2*fraction + a3;
|
andrewm@0
|
369 }
|
andrewm@0
|
370 else // Nearest neighbour interpolation
|
andrewm@0
|
371 {
|
andrewm@0
|
372 // Find the nearest input sample by rounding the fractional index to the
|
andrewm@0
|
373 // nearest integer. It's possible this will round it to the end of the buffer,
|
andrewm@0
|
374 // in which case we need to roll it back to the beginning.
|
andrewm@0
|
375 int closestSample = (int)floorf(dpr + 0.5f);
|
andrewm@0
|
376 if(closestSample == delayBufferLength_)
|
andrewm@0
|
377 closestSample = 0;
|
andrewm@0
|
378 interpolatedSample = delayData[closestSample];
|
andrewm@0
|
379 }
|
andrewm@0
|
380
|
andrewm@0
|
381 // Store the output sample in the buffer, which starts by containing the input sample
|
andrewm@0
|
382 channelData[i] += depth_ * weight * interpolatedSample;
|
andrewm@0
|
383 }
|
andrewm@0
|
384
|
andrewm@0
|
385 // 3-voice chorus uses two voices in quadrature phase (90 degrees apart). Otherwise,
|
andrewm@0
|
386 // spread the voice phases evenly around the unit circle. (For 2-voice chorus, this
|
andrewm@0
|
387 // code doesn't matter since the loop only runs once.)
|
andrewm@0
|
388 if(numVoices_ < 3)
|
andrewm@0
|
389 phaseOffset += 0.25f;
|
andrewm@0
|
390 else
|
andrewm@0
|
391 phaseOffset += 1.0f / (float)(numVoices_ - 1);
|
andrewm@0
|
392 }
|
andrewm@0
|
393
|
andrewm@0
|
394 // Store the current input in the delay buffer (no feedback in a chorus, unlike a flanger).
|
andrewm@0
|
395 delayData[dpw] = in;
|
andrewm@0
|
396
|
andrewm@0
|
397 // Increment the write pointer at a constant rate. The read pointer will move at different
|
andrewm@0
|
398 // rates depending on the settings of the LFO, the delay and the sweep width.
|
andrewm@0
|
399
|
andrewm@0
|
400 if (++dpw >= delayBufferLength_)
|
andrewm@0
|
401 dpw = 0;
|
andrewm@0
|
402
|
andrewm@0
|
403 // Update the LFO phase, keeping it in the range 0-1
|
andrewm@0
|
404 ph += frequency_*inverseSampleRate_;
|
andrewm@0
|
405 if(ph >= 1.0)
|
andrewm@0
|
406 ph -= 1.0;
|
andrewm@0
|
407 }
|
andrewm@0
|
408 }
|
andrewm@0
|
409
|
andrewm@0
|
410 // Having made a local copy of the state variables for each channel, now transfer the result
|
andrewm@0
|
411 // back to the main state variable so they will be preserved for the next call of processBlock()
|
andrewm@0
|
412
|
andrewm@0
|
413 delayWritePosition_ = dpw;
|
andrewm@0
|
414 lfoPhase_ = ph;
|
andrewm@0
|
415
|
andrewm@0
|
416 // In case we have more outputs than inputs, we'll clear any output
|
andrewm@0
|
417 // channels that didn't contain input data, (because these aren't
|
andrewm@0
|
418 // guaranteed to be empty - they may contain garbage).
|
andrewm@0
|
419 for (int i = numInputChannels; i < numOutputChannels; ++i)
|
andrewm@0
|
420 {
|
andrewm@0
|
421 buffer.clear (i, 0, buffer.getNumSamples());
|
andrewm@0
|
422 }
|
andrewm@0
|
423 }
|
andrewm@0
|
424
|
andrewm@0
|
425 //==============================================================================
|
andrewm@0
|
426 bool ChorusAudioProcessor::hasEditor() const
|
andrewm@0
|
427 {
|
andrewm@0
|
428 return true; // (change this to false if you choose to not supply an editor)
|
andrewm@0
|
429 }
|
andrewm@0
|
430
|
andrewm@0
|
431 AudioProcessorEditor* ChorusAudioProcessor::createEditor()
|
andrewm@0
|
432 {
|
andrewm@0
|
433 return new ChorusAudioProcessorEditor (this);
|
andrewm@0
|
434 }
|
andrewm@0
|
435
|
andrewm@0
|
436 //==============================================================================
|
andrewm@0
|
437 void ChorusAudioProcessor::getStateInformation (MemoryBlock& destData)
|
andrewm@0
|
438 {
|
andrewm@0
|
439 // You should use this method to store your parameters in the memory block.
|
andrewm@0
|
440 // You could do that either as raw data, or use the XML or ValueTree classes
|
andrewm@0
|
441 // as intermediaries to make it easy to save and load complex data.
|
andrewm@0
|
442
|
andrewm@0
|
443 // Create an outer XML element..
|
andrewm@0
|
444 XmlElement xml("C4DMPLUGINSETTINGS");
|
andrewm@0
|
445
|
andrewm@0
|
446 // add some attributes to it..
|
andrewm@0
|
447 xml.setAttribute("uiWidth", lastUIWidth_);
|
andrewm@0
|
448 xml.setAttribute("uiHeight", lastUIHeight_);
|
andrewm@0
|
449 xml.setAttribute("delay", delay_);
|
andrewm@0
|
450 xml.setAttribute("sweepWidth", sweepWidth_);
|
andrewm@0
|
451 xml.setAttribute("depth", depth_);
|
andrewm@0
|
452 xml.setAttribute("frequency", frequency_);
|
andrewm@0
|
453 xml.setAttribute("waveform", waveform_);
|
andrewm@0
|
454 xml.setAttribute("interpolation", interpolation_);
|
andrewm@0
|
455 xml.setAttribute("numVoices", numVoices_);
|
andrewm@0
|
456 xml.setAttribute("stereo", stereo_);
|
andrewm@0
|
457
|
andrewm@0
|
458 // then use this helper function to stuff it into the binary blob and return it..
|
andrewm@0
|
459 copyXmlToBinary(xml, destData);
|
andrewm@0
|
460 }
|
andrewm@0
|
461
|
andrewm@0
|
462 void ChorusAudioProcessor::setStateInformation (const void* data, int sizeInBytes)
|
andrewm@0
|
463 {
|
andrewm@0
|
464 // You should use this method to restore your parameters from this memory block,
|
andrewm@0
|
465 // whose contents will have been created by the getStateInformation() call.
|
andrewm@0
|
466
|
andrewm@0
|
467 // This getXmlFromBinary() helper function retrieves our XML from the binary blob..
|
andrewm@0
|
468 ScopedPointer<XmlElement> xmlState (getXmlFromBinary (data, sizeInBytes));
|
andrewm@0
|
469
|
andrewm@0
|
470 if(xmlState != 0)
|
andrewm@0
|
471 {
|
andrewm@0
|
472 // make sure that it's actually our type of XML object..
|
andrewm@0
|
473 if(xmlState->hasTagName("C4DMPLUGINSETTINGS"))
|
andrewm@0
|
474 {
|
andrewm@0
|
475 // ok, now pull out our parameters..
|
andrewm@0
|
476 lastUIWidth_ = xmlState->getIntAttribute("uiWidth", lastUIWidth_);
|
andrewm@0
|
477 lastUIHeight_ = xmlState->getIntAttribute("uiHeight", lastUIHeight_);
|
andrewm@0
|
478
|
andrewm@0
|
479 delay_ = (float)xmlState->getDoubleAttribute("delay", delay_);
|
andrewm@0
|
480 sweepWidth_ = (float)xmlState->getDoubleAttribute("sweepWidth", sweepWidth_);
|
andrewm@0
|
481 depth_ = (float)xmlState->getDoubleAttribute("depth", depth_);
|
andrewm@0
|
482 frequency_ = (float)xmlState->getDoubleAttribute("frequency", frequency_);
|
andrewm@0
|
483 waveform_ = xmlState->getIntAttribute("waveform", waveform_);
|
andrewm@0
|
484 interpolation_ = xmlState->getIntAttribute("interpolation", interpolation_);
|
andrewm@0
|
485 numVoices_ = xmlState->getIntAttribute("numVoices", numVoices_);
|
andrewm@0
|
486 stereo_ = xmlState->getIntAttribute("stereo", stereo_);
|
andrewm@0
|
487 }
|
andrewm@0
|
488 }
|
andrewm@0
|
489 }
|
andrewm@0
|
490
|
andrewm@0
|
491 //==============================================================================
|
andrewm@0
|
492 // Function for calculating LFO waveforms. Phase runs from 0-1, output is scaled
|
andrewm@0
|
493 // from 0 to 1 (note: not -1 to 1 as would be typical of sine).
|
andrewm@0
|
494 float ChorusAudioProcessor::lfo(float phase, int waveform)
|
andrewm@0
|
495 {
|
andrewm@0
|
496 switch(waveform)
|
andrewm@0
|
497 {
|
andrewm@0
|
498 case kWaveformTriangle:
|
andrewm@0
|
499 if(phase < 0.25f)
|
andrewm@0
|
500 return 0.5f + 2.0f*phase;
|
andrewm@0
|
501 else if(phase < 0.75f)
|
andrewm@0
|
502 return 1.0f - 2.0f*(phase - 0.25f);
|
andrewm@0
|
503 else
|
andrewm@0
|
504 return 2.0f*(phase-0.75f);
|
andrewm@0
|
505 case kWaveformSquare:
|
andrewm@0
|
506 if(phase < 0.5f)
|
andrewm@0
|
507 return 1.0f;
|
andrewm@0
|
508 else
|
andrewm@0
|
509 return 0.0f;
|
andrewm@0
|
510 case kWaveformSawtooth:
|
andrewm@0
|
511 if(phase < 0.5f)
|
andrewm@0
|
512 return 0.5f + phase;
|
andrewm@0
|
513 else
|
andrewm@0
|
514 return phase - 0.5f;
|
andrewm@0
|
515 case kWaveformSine:
|
andrewm@0
|
516 default:
|
andrewm@0
|
517 return 0.5f + 0.5f*sinf(2.0 * M_PI * phase);
|
andrewm@0
|
518 }
|
andrewm@0
|
519 }
|
andrewm@0
|
520
|
andrewm@0
|
521 //==============================================================================
|
andrewm@0
|
522 // This creates new instances of the plugin..
|
andrewm@0
|
523 AudioProcessor* JUCE_CALLTYPE createPluginFilter()
|
andrewm@0
|
524 {
|
andrewm@0
|
525 return new ChorusAudioProcessor();
|
andrewm@0
|
526 }
|