Mercurial > hg > asc-c
view ComputeFeatures.m @ 0:acfea2266c6d tip
Baseline classification system. Note that needs ma toolbox (for comoputation of mfccs) and pmtk3 toolbox
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Fri, 31 May 2013 12:25:30 +0100 |
parents | |
children |
line wrap: on
line source
function [fea, feaNam, feaSiz] = ComputeFeatures(wav, par) % Computes a feature vector consisting of MFCCs coefficients and % coefficients derived from a matching pursuit decomposition with Gabor % atoms. % % [fea, feaNam] = computeMFCCsAndMP(wav,par) % % Input % -wav: file name locating a .wav audio signal. % -par: struct of paramters with the following fields % .fs (22050): sampling frequency % .num_ceps_coeffs (13): number of cepstral coefficients % .mel_filt_bank ([0 11025 23]): extrema and number of mel frequency % bands % .use_first_coeff (false): retain 1st MFCC coefficient % .fft_size (1024): length of fft % .hopsize (512): overlap of consecutive fft % Output % -fea: matrix of features (one column per frame) % -feaNam: struct containing names of features %% Unit test if ~nargin, [fea, feaNam, feaSiz] = unitTest; return, end %% Defaults if ~exist('par','var') || isempty(par), par = struct; end def.fs = 22050; %sampling rate def.fft_size = 1024; %size of window def.hopsize = 512; %step size def.usePreEmphasis = false; %use pre-emphasis (high pass filter) def.feaNam = {'mfcc','dmfcc','nme','hos','zcr','sro','scn','sfl','lpc','mpf'}; par = setdefaultoptions(par,def); %set default options %% Compute features s = preprocessAudio(wav,par); %preprocess audio file feaSiz = []; fea = []; par.feaNam = {par.feaNam}; for iFea=1:length(par.feaNam); switch par.feaNam{iFea} case {'mfcc','dmfcc','nme'} %MFCCs and related [mfcc,~,mel] = ma_mfcc(s,par); switch par.feaNam{iFea} case 'mfcc' x = mfcc; case 'dmfcc' x = derivative(mfcc); case 'nme' x = mel*diag(1./sum(mel)); %energy in each mel band normalized by total energy end case 'hos' %Higher order statistics (see Chi2003Ba) x = (kurtosis(s)/(var(s)^2))*ones(1,fix(length(s)/par.hopsize)-1); case 'zcr' x = zcr(s,par.fft_size,par.hopsize,par.fs)'; %zero crossing rate case 'sro' x = SpectralRollOff(s,par.fft_size,par.hopsize,0.80,par.fs); %spectral roll-off case 'scn' x = SpectralCentroid(s,par.fft_size,par.hopsize,par.fs)'; %spectral centroid case 'sfl' x = SpectralFlux(s,par.fft_size,par.hopsize,par.fs)'; %spectral flux case 'lpc' x = LPCFeatures(s,par); %LPC features case 'mpf' x = GaborFeatures(s,par); %Gabor features end feaSiz = [feaSiz, size(x,1)]; fea = [fea; x]; feaNam = par.feaNam; end function s = preprocessAudio(wav,par) s = wavread(wav); %read file s = s(1:2:end,:); %subsample audio (from 44.1kHz tp 22.05kHz) if size(s,2)>0, s = mean(s,2); end %convert to mono if par.usePreEmphasis %apply pre-emphasis filter that highlights high frequencies h = [1, -15/16]; %see Fundamentals of speech processing (Rabiner, Juang) s = filter(h,1,s); end s = s/max(abs(s)); %normalize audio function dmfcc = derivative(mfcc) dmfcc = zeros(size(mfcc)); %mfccs 1st derivative for iRow=1:size(mfcc,1) temp = conv([mfcc(iRow,1) mfcc(iRow,:) mfcc(iRow,end)],[1/2,0,-1/2],'same'); dmfcc(iRow,:) = temp(2:end-1); end function [fea, feaNam, feaSizes] = unitTest clear, clc, close all file = 'bus01.wav'; [fea, feaSizes] = ComputeFeatures(file);