comparison ComputeFeatures.m @ 0:acfea2266c6d tip

Baseline classification system. Note that needs ma toolbox (for comoputation of mfccs) and pmtk3 toolbox
author Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk>
date Fri, 31 May 2013 12:25:30 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:acfea2266c6d
1 function [fea, feaNam, feaSiz] = ComputeFeatures(wav, par)
2 % Computes a feature vector consisting of MFCCs coefficients and
3 % coefficients derived from a matching pursuit decomposition with Gabor
4 % atoms.
5 %
6 % [fea, feaNam] = computeMFCCsAndMP(wav,par)
7 %
8 % Input
9 % -wav: file name locating a .wav audio signal.
10 % -par: struct of paramters with the following fields
11 % .fs (22050): sampling frequency
12 % .num_ceps_coeffs (13): number of cepstral coefficients
13 % .mel_filt_bank ([0 11025 23]): extrema and number of mel frequency
14 % bands
15 % .use_first_coeff (false): retain 1st MFCC coefficient
16 % .fft_size (1024): length of fft
17 % .hopsize (512): overlap of consecutive fft
18 % Output
19 % -fea: matrix of features (one column per frame)
20 % -feaNam: struct containing names of features
21 %% Unit test
22 if ~nargin, [fea, feaNam, feaSiz] = unitTest; return, end
23
24 %% Defaults
25 if ~exist('par','var') || isempty(par), par = struct; end
26
27 def.fs = 22050; %sampling rate
28 def.fft_size = 1024; %size of window
29 def.hopsize = 512; %step size
30 def.usePreEmphasis = false; %use pre-emphasis (high pass filter)
31 def.feaNam = {'mfcc','dmfcc','nme','hos','zcr','sro','scn','sfl','lpc','mpf'};
32
33 par = setdefaultoptions(par,def); %set default options
34
35 %% Compute features
36 s = preprocessAudio(wav,par); %preprocess audio file
37
38 feaSiz = [];
39 fea = [];
40 par.feaNam = {par.feaNam};
41 for iFea=1:length(par.feaNam);
42 switch par.feaNam{iFea}
43 case {'mfcc','dmfcc','nme'} %MFCCs and related
44 [mfcc,~,mel] = ma_mfcc(s,par);
45 switch par.feaNam{iFea}
46 case 'mfcc'
47 x = mfcc;
48 case 'dmfcc'
49 x = derivative(mfcc);
50 case 'nme'
51 x = mel*diag(1./sum(mel)); %energy in each mel band normalized by total energy
52 end
53 case 'hos' %Higher order statistics (see Chi2003Ba)
54 x = (kurtosis(s)/(var(s)^2))*ones(1,fix(length(s)/par.hopsize)-1);
55 case 'zcr'
56 x = zcr(s,par.fft_size,par.hopsize,par.fs)'; %zero crossing rate
57 case 'sro'
58 x = SpectralRollOff(s,par.fft_size,par.hopsize,0.80,par.fs); %spectral roll-off
59 case 'scn'
60 x = SpectralCentroid(s,par.fft_size,par.hopsize,par.fs)'; %spectral centroid
61 case 'sfl'
62 x = SpectralFlux(s,par.fft_size,par.hopsize,par.fs)'; %spectral flux
63 case 'lpc'
64 x = LPCFeatures(s,par); %LPC features
65 case 'mpf'
66 x = GaborFeatures(s,par); %Gabor features
67 end
68 feaSiz = [feaSiz, size(x,1)];
69 fea = [fea; x];
70 feaNam = par.feaNam;
71 end
72
73 function s = preprocessAudio(wav,par)
74 s = wavread(wav); %read file
75 s = s(1:2:end,:); %subsample audio (from 44.1kHz tp 22.05kHz)
76 if size(s,2)>0, s = mean(s,2); end %convert to mono
77 if par.usePreEmphasis %apply pre-emphasis filter that highlights high frequencies
78 h = [1, -15/16]; %see Fundamentals of speech processing (Rabiner, Juang)
79 s = filter(h,1,s);
80 end
81 s = s/max(abs(s)); %normalize audio
82
83 function dmfcc = derivative(mfcc)
84 dmfcc = zeros(size(mfcc)); %mfccs 1st derivative
85 for iRow=1:size(mfcc,1)
86 temp = conv([mfcc(iRow,1) mfcc(iRow,:) mfcc(iRow,end)],[1/2,0,-1/2],'same');
87 dmfcc(iRow,:) = temp(2:end-1);
88 end
89
90 function [fea, feaNam, feaSizes] = unitTest
91 clear, clc, close all
92 file = 'bus01.wav';
93 [fea, feaSizes] = ComputeFeatures(file);