Mercurial > hg > ambi-plugin
view Source/Decoder.cpp @ 1:e85bd6381a58
Broken XCode project.
author | martinm_home <martin.morrell@eecs.qmul.ac.uk> |
---|---|
date | Thu, 06 Sep 2012 10:01:08 +0100 |
parents | 2fa9c10568d1 |
children | d967dd1eafe8 |
line wrap: on
line source
/* * Decoder.cpp * SoundField * * Created by Martin Morrell on 14/06/2012. * Copyright 2012 Queen Mary University of London. All rights reserved. * */ #include "Decoder.h" #define _USE_MATH_DEFINES #include <cmath> #include <stdlib.h> #define RearVerbWidth 55 #define RearVerbPattern 0.5 #define HiVerbWidth 30 #define HiVerbPattern 0.5 double Decoder::degRad(double angle) { return (angle/180*M_PI); }; double Decoder::radDeg(double angle) { return (angle/M_PI*180); }; //Overall Functions void Decoder::monoDecoder(double &w, double &x, double &y, double &z) { //Sound field rotations. Only called if the value is not 0 if (Rotate!=0.0f) rotateField(x, y); if (Tilt!=0.0f) tiltField(y, z); if (Tumble!=0.0f) tumbleField(x, z); //Zoom function. Only called if the value is not 0 if (Zoom!=0.0f) { switch (ZoomMethod) { case 0: dominanceZoom(w, x, y, z); break; case 1: pressZoom(w, x, y, z); break; case 2: pushZoom(w, x, y, z); break; case 3: focusZoom(w, x, y, z); break; default: break; } } //Centre virtual mic centreMic(w, x); }; void Decoder::stereoDecoder(double &w, double &x, double &y, double &z) { //Sound field rotations. Only called if the value is not 0 if (Rotate!=0.0f) rotateField(x, y); if (Tilt!=0.0f) tiltField(y, z); if (Tumble!=0.0f) tumbleField(x, z); //Zoom function. Only called if the value is not 0 if (Zoom!=0.0f) { switch (ZoomMethod) { case 0: dominanceZoom(w, x, y, z); break; case 1: pressZoom(w, x, y, z); break; case 2: pushZoom(w, x, y, z); break; case 3: focusZoom(w, x, y, z); break; default: break; } } switch (Mode) { case 0: xyDecode(w, x, y, z); break; case 1: msDecode(w, x, y, z); break; default: break; } if (RearVerb > -40) { rearVerb(w, x, y, z); } if (HiVerb >-40) { hiVerb(w, x, y, z); } }; void Decoder::twoOneDecoder(double &w, double &x, double &y, double &z) { //Sound field rotations. Only called if the value is not 0 if (Rotate!=0.0f) rotateField(x, y); if (Tilt!=0.0f) tiltField(y, z); if (Tumble!=0.0f) tumbleField(x, z); //Zoom function. Only called if the value is not 0 if (Zoom!=0.0f) { switch (ZoomMethod) { case 0: dominanceZoom(w, x, y, z); break; case 1: pressZoom(w, x, y, z); break; case 2: pushZoom(w, x, y, z); break; case 3: focusZoom(w, x, y, z); break; default: break; } } //Subwoofer signal and filtering subSignal(w); filterLF(); if (Fc>0) { filterHF(w, x, y, z); } //Front virtual mics switch (Mode) { case 0: xyDecode(w, x, y, z); break; case 1: msDecode(w, x, y, z); break; default: break; } //Reverbs if (RearVerb > -40) { rearVerb(w, x, y, z); } if (HiVerb >-40) { hiVerb(w, x, y, z); } }; void Decoder::lrcsDecoder(double &w, double &x, double &y, double &z) { //Sound field rotations. Only called if the value is not 0 if (Rotate!=0.0f) rotateField(x, y); if (Tilt!=0.0f) tiltField(y, z); if (Tumble!=0.0f) tumbleField(x, z); //Zoom function. Only called if the value is not 0 if (Zoom!=0.0f) { switch (ZoomMethod) { case 0: dominanceZoom(w, x, y, z); break; case 1: pressZoom(w, x, y, z); break; case 2: pushZoom(w, x, y, z); break; case 3: focusZoom(w, x, y, z); break; default: break; } } //Front virtual mics switch (Mode) { case 0: xyDecode(w, x, y, z); break; case 1: msDecode(w, x, y, z); break; default: break; } //Rear virtual mics switch (surMode) { case 0: xySurDecode(w, x, y, z); break; case 1: msSurDecode(w, x, y, z); break; default: break; } }; void Decoder::fiveDecoder(double &w, double &x, double &y, double &z) { //Sound field rotations. Only called if the value is not 0 if (Rotate!=0.0f) rotateField(x, y); if (Tilt!=0.0f) tiltField(y, z); if (Tumble!=0.0f) tumbleField(x, z); //Zoom function. Only called if the value is not 0 if (Zoom!=0.0f) { switch (ZoomMethod) { case 0: dominanceZoom(w, x, y, z); break; case 1: pressZoom(w, x, y, z); break; case 2: pushZoom(w, x, y, z); break; case 3: focusZoom(w, x, y, z); break; default: break; } } //Centre virtual mic centreMic(w, x); //Front virtual mics switch (Mode) { case 0: xyDecode(w, x, y, z); break; case 1: msDecode(w, x, y, z); break; default: break; } //Rear virtual mics switch (surMode) { case 0: xySurDecode(w, x, y, z); break; case 1: msSurDecode(w, x, y, z); break; default: break; } }; void Decoder::fiveOneDecoder(double &w, double &x, double &y, double &z) { //Sound field rotations. Only called if the value is not 0 if (Rotate!=0.0f) rotateField(x, y); if (Tilt!=0.0f) tiltField(y, z); if (Tumble!=0.0f) tumbleField(x, z); //Zoom function. Only called if the value is not 0 if (Zoom!=0.0f) { switch (ZoomMethod) { case 0: dominanceZoom(w, x, y, z); break; case 1: pressZoom(w, x, y, z); break; case 2: pushZoom(w, x, y, z); break; case 3: focusZoom(w, x, y, z); break; default: break; } } //Subwoofer signal and filtering subSignal(w); filterLF(); if (Fc>0) { filterHF(w, x, y, z); } //Centre virtual mic centreMic(w, x); //Front virtual mics switch (Mode) { case 0: xyDecode(w, x, y, z); break; case 1: msDecode(w, x, y, z); break; default: break; } //Rear virtual mics switch (surMode) { case 0: xySurDecode(w, x, y, z); break; case 1: msSurDecode(w, x, y, z); break; default: break; } }; //SoundField Rotations void Decoder::rotateField(double &x, double &y) { double temp = x; x = cos(degRad(Rotate))*temp - sin(degRad(Rotate))*y; y = cos(degRad(Rotate))*y + sin(degRad(Rotate))*temp; }; void Decoder::tiltField(double &y, double &z) { double temp = y; y = cos(degRad(Tilt))*temp - sin(degRad(Tilt))*z; z = cos(degRad(Tilt))*z + sin(degRad(Tilt))*temp; }; void Decoder::tumbleField(double &x, double &z) { double temp = x; x = cos(degRad(Tumble))*temp - sin(degRad(Tumble))*z; z = cos(degRad(Tumble))*z + sin(degRad(Tumble))*temp; }; //Zoom Methods void Decoder::dominanceZoom(double &w, double &x, double &y, double &z) { double lambda = pow(10,(Zoom*0.24/20)); double temp[4]; temp[0]=w; temp[1]=x; temp[2]=y; temp[3]=z; w = 0.5*(lambda+pow(lambda,-1))*temp[0] + pow(8,-0.5)*(lambda-pow(lambda,-1))*temp[1]; x = 0.5*(lambda+pow(lambda,-1))*temp[1] + pow(2,-0.5)*(lambda-pow(lambda,-1))*temp[0]; }; void Decoder::pressZoom(double &w, double &x, double &y, double &z) { double temp[4]; temp[0]=w; temp[1]=x; temp[2]=y; temp[3]=z; x = (sqrt(2.0)*std::abs(sin(degRad(Zoom*0.9)))*sin(degRad(Zoom*0.9))*temp[0]) + (pow(cos(degRad(Zoom*0.9)),2)*temp[1]); y = cos(degRad(Zoom*0.9))*temp[2]; z = cos(degRad(Zoom*0.9))*temp[3]; }; void Decoder::pushZoom(double &w, double &x, double &y, double &z) { double temp[4]; temp[0]=w; temp[1]=x; temp[2]=y; temp[3]=z; x = (sqrt(2.0)*std::abs(sin(degRad(Zoom*0.9)))*sin(degRad(Zoom*0.9))*temp[0]) + (pow(cos(degRad(Zoom*0.9)),2)*temp[1]); y = pow(cos(degRad(Zoom*0.9)),2)*temp[2]; z = pow(cos(degRad(Zoom*0.9)),2)*temp[3]; }; void Decoder::focusZoom(double &w, double &x, double &y, double &z) { double temp[4]; temp[0]=w; temp[1]=x; temp[2]=y; temp[3]=z; w = ((1/(1+std::abs(sin(degRad(Zoom*0.9)))))*temp[0]) + ((1/sqrt(2.0))*(sin(degRad(Zoom*0.9))/(1+std::abs(sin(degRad(Zoom*0.9))))))* temp[1]; x = sqrt(2.0)*(sin(degRad(Zoom*0.9))/(1+std::abs(sin(degRad(Zoom*0.9)))))*temp[0] + (1/(1+std::abs(sin(degRad(Zoom*0.9)))))*temp[1]; y = sqrt((1-std::abs(sin(degRad(Zoom*0.9))))/(1+std::abs(sin(degRad(Zoom*0.9)))))*temp[2]; z = sqrt((1-std::abs(sin(degRad(Zoom*0.9))))/(1+std::abs(sin(degRad(Zoom*0.9)))))*temp[3]; }; //Stereo Decoders void Decoder::xyDecode(double &w, double &x, double &y, double &z) { outputL = Pattern*sqrt(2.0)*w + (1-Pattern)*(cos(degRad(Width))*x + sin(degRad(Width))*y); outputR = Pattern*sqrt(2.0)*w + (1-Pattern)*(cos(degRad(Width))*x - sin(degRad(Width))*y); }; void Decoder::msDecode(double &w, double &x, double &y, double &z) { outputL = (cos(degRad(Width))*(Pattern*w*sqrt(2.0) + (1-Pattern)*x)) + (sin(degRad(Width))*y); outputR = (cos(degRad(Width))*(Pattern*w*sqrt(2.0) + (1-Pattern)*x)) - (sin(degRad(Width))*y); }; //Stereo Reverbs void Decoder::rearVerb(double &w, double &x, double &y, double &z) { switch (Mode) { case 0: outputL += (RearVerbPattern*sqrt(2.0)*w + (1-RearVerbPattern)*(cos(degRad(RearVerbWidth))*-x + sin(degRad(RearVerbWidth))*y))*pow(10, RearVerb/20); outputR += (RearVerbPattern*sqrt(2.0)*w + (1-RearVerbPattern)*(cos(degRad(RearVerbWidth))*-x - sin(degRad(RearVerbWidth))*y))*pow(10, RearVerb/20); break; case 1: outputL += ((cos(degRad(RearVerbWidth))*(RearVerbPattern*w*sqrt(2.0) + (1-RearVerbPattern)*-x)) + (sin(degRad(RearVerbWidth))*y))*pow(10, RearVerb/20); outputR += ((cos(degRad(RearVerbWidth))*(RearVerbPattern*w*sqrt(2.0) + (1-RearVerbPattern)*-x)) - (sin(degRad(RearVerbWidth))*y))*pow(10, RearVerb/20); break; } }; void Decoder::hiVerb(double &w, double &x, double &y, double &z) { switch (Mode) { case 0: outputL += (HiVerbPattern*sqrt(2.0)*w + (1-HiVerbPattern)*(cos(degRad(HiVerbWidth))*z + sin(degRad(HiVerbWidth))*y))*pow(10, HiVerb/20); outputR += (HiVerbPattern*sqrt(2.0)*w + (1-HiVerbPattern)*(cos(degRad(HiVerbWidth))*z - sin(degRad(HiVerbWidth))*y))*pow(10, HiVerb/20); break; case 1: outputL += ((cos(degRad(HiVerbWidth))*(HiVerbPattern*w*sqrt(2.0) + (1-HiVerbPattern)*z)) + (sin(degRad(HiVerbWidth))*y))*pow(10, HiVerb/20); outputR += ((cos(degRad(HiVerbWidth))*(HiVerbPattern*w*sqrt(2.0) + (1-HiVerbPattern)*z)) - (sin(degRad(HiVerbWidth))*y))*pow(10, HiVerb/20); break; } }; //Surround Decoders void Decoder::xySurDecode(double &w, double &x, double &y, double &z) { outputSL = (surPattern*sqrt(2.0)*w + (1-surPattern)*(cos(degRad(surWidth))*-x + sin(degRad(surWidth))*y))*surGain; outputSR = (surPattern*sqrt(2.0)*w + (1-surPattern)*(cos(degRad(surWidth))*-x - sin(degRad(surWidth))*y))*surGain; }; void Decoder::msSurDecode(double &w, double &x, double &y, double &z) { outputSL = ((cos(degRad(surWidth))*(surPattern*w*sqrt(2.0) + (1-surPattern)*-x)) + (sin(degRad(surWidth))*y))*surGain; outputSR = ((cos(degRad(surWidth))*(surPattern*w*sqrt(2.0) + (1-surPattern)*-x)) - (sin(degRad(surWidth))*y))*surGain; }; void Decoder::centreMic(double &w, double &x) { outputC = (centrePattern*sqrt(2.0)*w + (1-centrePattern)*x) * centreGain; }; void Decoder::subSignal(double &w) { outputS = sqrt(2.0)*w*subGain; }; void Decoder::filterCoefs(){ int k = tan((M_PI*abs(Fc))/Fs); double denominator = pow(k, 2) + 2*k + 1; //a values a[0] = 1; a[1] = (2*(pow(k,2)-1))/denominator; a[2] = (pow(k, 2) - 2*k + 1)/denominator; //b LF value bLF[0] = pow(k, 2) / denominator; bLF[1] = 2 * bLF[0]; bLF[2] = bLF[0]; //b HF values bHF[0] = 1/denominator; bHF[1] = -2 * bHF[0]; bHF[2] = bHF[0]; }; void Decoder::filterLF(){ double outLF; //LF Filtering outLF = (double)outputS*bLF[0] + prevInS[0]*bLF[1] + prevInS[1]*bLF[2] + prevOutS[0]*a[1] + prevOutS[1]*a[2]; //Previous Input and Output Samples prevOutS[1] = prevOutS[0]; prevOutS[0] = outLF; prevInS[1] = prevInS[0]; prevInS[0] = (double)outputS; //Final subwoofer Output outputS = outLF; }; void Decoder::filterHF(double &w, double &x, double &y, double &z){ double outHFw, outHFx, outHFy, outHFz; //w Filtering outHFw = -((double)w*bHF[0] + prevInw[0]*bHF[1] + prevInw[1]*bHF[2] + prevOutw[0]*a[1] + prevOutw[1]*a[2]); prevOutw[1] = prevOutw[0]; prevOutw[0] = outHFw; prevInw[1] = prevInw[0]; prevInw[0] = (double)w; w = outHFw; //x Filtering outHFx = -((double)x*bHF[0] + prevInx[0]*bHF[1] + prevInx[1]*bHF[2] + prevOutx[0]*a[1] + prevOutx[1]*a[2]); prevOutx[1] = prevOutx[0]; prevOutx[0] = outHFx; prevInx[1] = prevInx[0]; prevInx[0] = (double)x; x = outHFx; //y Filtering outHFy = -((double)y*bHF[0] + prevIny[0]*bHF[1] + prevIny[1]*bHF[2] + prevOuty[0]*a[1] + prevOuty[1]*a[2]); prevOuty[1] = prevOuty[0]; prevOuty[0] = outHFy; prevIny[1] = prevIny[0]; prevIny[0] = (double)y; y = outHFy; //z Filtering outHFz = -((double)z*bHF[0] + prevInz[0]*bHF[1] + prevInz[1]*bHF[2] + prevOutz[0]*a[1] + prevOutz[1]*a[2]); prevOutz[1] = prevOutz[0]; prevOutz[0] = outHFz; prevInz[1] = prevInz[0]; prevInz[0] = (double)z; z = outHFz; }; void Decoder::clearFilter(){ for (int i=0; i<2; i++) { prevInS[i] = 0; prevOutS[i] = 0; prevInw[i] = 0; prevOutw[i] = 0; prevInx[i] = 0; prevOutx[i] = 0; prevIny[i] = 0; prevOuty[i] = 0; prevInz[i] = 0; prevOutz[i] = 0; } };