Mercurial > hg > aimmat
comparison aim-mat/modules/usermodule/pitchstrength/find_pitches.m @ 4:537f939baef0 tip
various bug fixes and changed copyright message
author | Stefan Bleeck <bleeck@gmail.com> |
---|---|
date | Tue, 16 Aug 2011 14:37:17 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:20ada0af3d7d | 4:537f939baef0 |
---|---|
1 % function [pitchstrength, dominant_time] = find_pitches(profile, , a_priori, fqp_fq) | |
2 % | |
3 % To analyse the time interval profile of the auditory image | |
4 % | |
5 % INPUT VALUES: | |
6 % | |
7 % RETURN VALUE: | |
8 % | |
9 | |
10 % (c) 2011, University of Southampton | |
11 % Maintained by Stefan Bleeck (bleeck@gmail.com) | |
12 % download of current version is on the soundsoftware site: | |
13 % http://code.soundsoftware.ac.uk/projects/aimmat | |
14 % documentation and everything is on http://www.acousticscale.org | |
15 | |
16 function result = find_pitches(profile,options) | |
17 % different ways to define the pitch strength: | |
18 % 1: the absolute height of the highest peak | |
19 % 2: ratio between peak hight and width devided at base | |
20 % % % % 2: the ration of the highest peak divided by the width at a certain point (given | |
21 % % % % by the parameter height_to_width_ratio | |
22 % 3: the height of the highest peak divided by the hight of the peak just one to | |
23 % the right. This measurement is very successfull in the ramped/damped stimuli | |
24 % | |
25 % 4: Further we want to know all these values at a fixed point called target_frequency | |
26 % and in the range given by allowed_frequency_deviation in % | |
27 % | |
28 % 5: We are also interested in the frequency value of the highest peak, because | |
29 % we hope, that this is finally the pitch. | |
30 % | |
31 % 6: for the dual profile model, we also give back two more values concerning similar | |
32 % properties for the spectral profile. Here, the pitch strenght is defined as the | |
33 % height of the highest peak divided by the range that is given in two parameters | |
34 % (usually 20% to 80% of the maximum) | |
35 | |
36 | |
37 plot_switch =0; | |
38 | |
39 if nargin < 2 | |
40 options=[]; | |
41 end | |
42 % | |
43 | |
44 % peaks must be higher then this of the maximum to be recognised | |
45 ps_threshold=0.1; | |
46 height_width_ratio=options.ps_options.height_width_ratio; % height of peak, where the width is measured | |
47 | |
48 | |
49 % preliminary return values. | |
50 % height of the highest peak | |
51 % result.free.highest_peak_hight=0; | |
52 % result.free.highest_peak_frequency=0; | |
53 % hight to width ratio | |
54 % result.free.height_width_ratio=0; | |
55 % highest peak divided by next highest | |
56 % result.free.neigbouring_ratio=0; | |
57 | |
58 % now all these at a fixed frequency: | |
59 % % result.fixed.highest_peak_hight=0; | |
60 % result.fixed.highest_peak_frequency=0; | |
61 % result.fixed.height_width_ratio=0; | |
62 % result.fixed.neigbouring_ratio=0; | |
63 % | |
64 % % other things useful for plotting | |
65 % result.smoothed_signal=[]; | |
66 % result.peaks = []; | |
67 | |
68 | |
69 % now start the show | |
70 | |
71 % % change the scaling to logarithm, before doing anything else: | |
72 % log_profile=logsigx(profile,0.001,0.035); | |
73 % result.smoothed_signal=log_profile; | |
74 | |
75 % don't do this change | |
76 log_profile=profile; | |
77 | |
78 current_lowpass_frequency=options.ps_options.low_pass_frequency; | |
79 smooth_sig=lowpass(log_profile,current_lowpass_frequency); | |
80 envpeaks = PeakPicker(smooth_sig); | |
81 result.smoothed_signal=smooth_sig; | |
82 | |
83 if isempty(envpeaks) % only, when there is no signal | |
84 return | |
85 end | |
86 | |
87 % reject impossible peaks | |
88 ep=envpeaks;ep2=[];c=1; | |
89 for i=1:length(envpeaks); | |
90 if envpeaks{i}.t>0.002 && envpeaks{i}.t<0.03 && envpeaks{i}.y>0.01 | |
91 ep2{c}=ep{i}; | |
92 c=c+1; | |
93 end | |
94 end | |
95 envpeaks=ep2; % replace | |
96 if isempty(envpeaks) % only, when there is no signal | |
97 return | |
98 end | |
99 % | |
100 % % translate times back to times: | |
101 % for i=1:length(envpeaks) % construct all maxima | |
102 % envpeaks{i}.t=1/x2fre(smooth_sig,envpeaks{i}.x); | |
103 % end | |
104 | |
105 | |
106 % nr1: highest peak value | |
107 % find the highest peak and its frequency | |
108 % sort all for the highest first! | |
109 % envpeaks=sortstruct(envpeaks,'y'); | |
110 % result.free.highest_peak_frequency=1/envpeaks{1}.t; | |
111 % result.free.highest_peak_hight=envpeaks{1}.y; | |
112 | |
113 | |
114 | |
115 % SB 08.2012: adjusted the method to make it simpler for Daniels signals of | |
116 % IRN | |
117 % nr 2: height to width of each peak. Height=height of peak. Width = width | |
118 % of the two adjacent minima | |
119 for i=1:length(envpeaks) % construct all maxima | |
120 where=envpeaks{i}.t; | |
121 hp=envpeaks{i}.y; % height peak | |
122 hb=(envpeaks{i}.left.y+envpeaks{i}.right.y)/2;% base peak | |
123 diffheight=hp-hb; | |
124 w=log(envpeaks{i}.right.t)-log(envpeaks{i}.left.t); % width at base | |
125 if w>0 && diffheight>0.02; | |
126 envpeaks{i}.v2012_height_base_width_ratio=diffheight/w; | |
127 else | |
128 envpeaks{i}.v2012_height_base_width_ratio=0; | |
129 end | |
130 envpeaks{i}.v2012_base_width=w; | |
131 envpeaks{i}.v2012_base_where_widths=hb; %base height | |
132 end | |
133 | |
134 envpeaks=sortstruct(envpeaks,'v2012_height_base_width_ratio'); | |
135 | |
136 if plot_switch | |
137 figure(2134) | |
138 clf | |
139 hold on | |
140 plot(log_profile,'r'); | |
141 plot(smooth_sig,'b') | |
142 for i=1:min(5,length(envpeaks)) | |
143 % time=envpeaks{i}.t; | |
144 % x=envpeaks{i}.x; | |
145 % y=envpeaks{i}.y; | |
146 % plot(time,y,'Marker','o','Markerfacecolor','g','MarkeredgeColor','g','MarkerSize',2); | |
147 % time_left=envpeaks{i}.left.t; | |
148 % % x_left=envpeaks{i}.left.x; | |
149 % y_left=envpeaks{i}.left.y; | |
150 % time_right=envpeaks{i}.right.t; | |
151 % % x_right=envpeaks{i}.right.x; | |
152 % y_right=envpeaks{i}.right.y; | |
153 % plot(time_left,y_left,'Marker','o','Markerfacecolor','r','MarkeredgeColor','r','MarkerSize',2); | |
154 % plot(time_right,y_right,'Marker','o','Markerfacecolor','r','MarkeredgeColor','r','MarkerSize',2); | |
155 | |
156 t=envpeaks{i}.t; | |
157 ypeak=envpeaks{i}.y; | |
158 % ps=peaks{ii}.pitchstrength; | |
159 ps=envpeaks{i}.v2012_height_base_width_ratio; | |
160 | |
161 if i==1 | |
162 plot(t,ypeak,'Marker','o','Markerfacecolor','b','MarkeredgeColor','b','MarkerSize',10); | |
163 text(t,ypeak*1.05,sprintf('%3.0f Hz: %4.2f ',1/t,ps),'VerticalAlignment','bottom','HorizontalAlignment','center','color','b','Fontsize',12); | |
164 else | |
165 plot(t,ypeak,'Marker','o','Markerfacecolor','g','MarkeredgeColor','w','MarkerSize',5); | |
166 text(t,ypeak*1.05,sprintf('%3.0f Hz: %4.2f ',1/t,ps),'VerticalAlignment','bottom','HorizontalAlignment','center','color','g','Fontsize',12); | |
167 end | |
168 plot(envpeaks{i}.left.t,envpeaks{i}.left.y,'Marker','o','Markerfacecolor','r','MarkeredgeColor','r','MarkerSize',5); | |
169 plot(envpeaks{i}.right.t,envpeaks{i}.right.y,'Marker','o','Markerfacecolor','r','MarkeredgeColor','r','MarkerSize',5); | |
170 | |
171 | |
172 ybase=envpeaks{i}.v2012_base_where_widths; | |
173 line([t t],[ybase ypeak],'color','m'); | |
174 line([envpeaks{i}.left.t envpeaks{i}.right.t],[ybase ybase],'color','m'); | |
175 | |
176 end | |
177 | |
178 % set(gca,'xscale','log') | |
179 set(gca,'xlim',[0.001 0.03]) | |
180 | |
181 fres=[500 300 200 150 100 70 50 20]; | |
182 set(gca,'xtick',1./fres); | |
183 set(gca,'xticklabel',fres); | |
184 xlabel('Frequency (Hz)') | |
185 ylabel('arbitrary normalized units') | |
186 | |
187 % current_time=options.current_time*1000; | |
188 % y=get(gca,'ylim'); | |
189 % y=y(2); | |
190 % text(700,y,sprintf('%3.0f ms',current_time),'verticalalignment','top'); | |
191 | |
192 % for i=1:length(envpeaks) | |
193 % height_width_ratio=envpeaks{i}.height_width_ratio; | |
194 % if i <4 | |
195 % line([envpeaks{i}.t envpeaks{i}.x],[envpeaks{i}.y envpeaks{i}.y*(1-height_width_ratio)],'Color','r'); | |
196 % line([envpeaks{i}.where_widths(1) envpeaks{i}.where_widths(2)],[envpeaks{i}.y*(1-height_width_ratio) envpeaks{i}.y*(1-height_width_ratio)],'Color','r'); | |
197 % x=envpeaks{i}.t; | |
198 % fre=1/envpeaks{i}.t; | |
199 % y=envpeaks{i}.y; | |
200 % text(x,y*1.05,sprintf('%3.0fHz: %2.2f',fre,height_width_ratio),'HorizontalAlignment','center'); | |
201 % end | |
202 % end | |
203 end | |
204 | |
205 | |
206 % and return the final result, only highest peak | |
207 peaks2=sortstruct(envpeaks,'v2012_height_base_width_ratio'); | |
208 result.free.ps=peaks2{1}.v2012_height_base_width_ratio; | |
209 result.free.fre=1/peaks2{1}.t; | |
210 | |
211 | |
212 | |
213 % | |
214 % | |
215 % % nr 2: height to width of highest peak | |
216 % for i=1:length(envpeaks) % construct all maxima | |
217 % % where=bin2time(smooth_sig,envpeaks{i}.x); | |
218 % where=envpeaks{i}.t; | |
219 % [~,height,breit,where_widths]=qvalue(smooth_sig,where,height_width_ratio); | |
220 % width=time2bin(smooth_sig,breit); | |
221 % if width>0 | |
222 % envpeaks{i}.height_width_ratio=height/width; | |
223 % else | |
224 % envpeaks{i}.height_width_ratio=0; | |
225 % end | |
226 % envpeaks{i}.width=width; | |
227 % envpeaks{i}.where_widths=where_widths; | |
228 % envpeaks{i}.peak_base_height_y=height*(1-height_width_ratio); | |
229 % end | |
230 % % and return the results | |
231 % % result.free.height_width_ratio=envpeaks{1}.height_width_ratio; | |
232 | |
233 % | |
234 % % nr 3: height of highest / right neigbour (right when time is towards | |
235 % % left, sorry) | |
236 % for i=1:length(envpeaks) % construct all maxima | |
237 % left=envpeaks{i}.left; | |
238 % if isfield(left,'y') && left.y>0 | |
239 % envpeaks{i}.neigbouring_ratio=result.free.highest_peak_hight/left.y; | |
240 % else | |
241 % envpeaks{i}.neigbouring_ratio=0; | |
242 % end | |
243 % end | |
244 % result.free.neigbouring_ratio=envpeaks{1}.neigbouring_ratio; | |
245 | |
246 | |
247 target_frequency=options.ps_options.target_frequency; | |
248 % now find all values for the fixed pitch strengh in target_frequency | |
249 if target_frequency>0 % only, when wanted | |
250 min_fre=target_frequency/options.ps_options.allowed_frequency_deviation; | |
251 max_fre=target_frequency*options.ps_options.allowed_frequency_deviation; | |
252 | |
253 for i=1:length(envpeaks) % look through all peaks, which one we need | |
254 fre_peak=1/envpeaks{i}.t; | |
255 if fre_peak > min_fre && fre_peak < max_fre | |
256 % we assume for the moment, that we only have one allowed here | |
257 % nr 1: height | |
258 result.fixed.highest_peak_frequency=fre_peak; | |
259 result.fixed.highest_peak_hight=envpeaks{i}.y; | |
260 result.fixed.height_width_ratio=envpeaks{i}.height_width_ratio; | |
261 result.fixed.neigbouring_ratio=envpeaks{i}.neigbouring_ratio; | |
262 end | |
263 end | |
264 end | |
265 | |
266 result.peaks =envpeaks; | |
267 | |
268 | |
269 | |
270 return | |
271 | |
272 | |
273 | |
274 | |
275 | |
276 % kucke, ob sich das erste Maxima überlappt. Falls ja, nochmal | |
277 % berechnen mit niedriger Lowpass frequenz | |
278 % nr_peaks=length(envpeaks); | |
279 % if nr_peaks==1 | |
280 % peak_found=1; | |
281 % continue | |
282 % end | |
283 % xleft=envpeaks{1}.where_widths(1); | |
284 % xright=envpeaks{1}.where_widths(2); | |
285 % for i=2:nr_peaks % | |
286 % xnull=envpeaks{i}.x; | |
287 % if xnull < xleft && xnull > xright | |
288 % peak_found=0; | |
289 % current_lowpass_frequency=current_lowpass_frequency/2; | |
290 % if current_lowpass_frequency<62.5 | |
291 % return | |
292 % end | |
293 % break | |
294 % end | |
295 % % wenn noch hier, dann ist alles ok | |
296 % peak_found=1; | |
297 % end | |
298 % end | |
299 | |
300 | |
301 % reduce the peaks to the relevant ones: | |
302 % through out all with pitchstrength smaller then threshold | |
303 % count=1; | |
304 % min_ps=ps_threshold*envpeaks{1}.pitchstrength; | |
305 % for i=1:length(envpeaks) | |
306 % if envpeaks{i}.pitchstrength>min_ps | |
307 % rpeaks{count}=envpeaks{i}; | |
308 % count=count+1; | |
309 % end | |
310 % end | |
311 | |
312 | |
313 % % final result for the full set | |
314 % result.final_pitchstrength=rpeaks{1}.pitchstrength; | |
315 % result.final_dominant_frequency=rpeaks{1}.fre; | |
316 % result.final_dominant_time=rpeaks{1}.t; | |
317 % result.smoothed_signal=smooth_sig; | |
318 % result.peaks=rpeaks; | |
319 % % return | |
320 | |
321 % Neuberechnung der Pitchstrength für peaks, die das Kriterium der | |
322 % Höhe zu Breite nicht erfüllen | |
323 % for i=1:length(rpeaks) % construct all maxima | |
324 % where=bin2time(smooth_sig,rpeaks{i}.x); | |
325 % [dummy,height,breit,where_widths]=qvalue(smooth_sig,where,heighttowidthminimum); | |
326 % width=time2bin(smooth_sig,breit); | |
327 % | |
328 % xleft=where_widths(2); | |
329 % xright=where_widths(1); | |
330 % left_peak=rpeaks{i}.left; | |
331 % right_peak=rpeaks{i}.right; | |
332 % | |
333 % | |
334 % xnull=rpeaks{i}.x; | |
335 % if xleft<left_peak.x || xright>right_peak.x | |
336 % t_xnull=bin2time(smooth_sig,xnull); | |
337 % [val,height,breit,widthvals,base_peak_y]=qvalue2(smooth_sig,t_xnull); | |
338 % width=time2bin(smooth_sig,breit); | |
339 % if width>0 | |
340 % rpeaks{i}.pitchstrength=height/width; | |
341 % else | |
342 % rpeaks{i}.pitchstrength=0; | |
343 % end | |
344 % rpeaks{i}.where_widths=time2bin(smooth_sig,widthvals); | |
345 % rpeaks{i}.width=width; | |
346 % rpeaks{i}.peak_base_height_y=base_peak_y; | |
347 % end | |
348 % end | |
349 | |
350 % sort again all for the highest first! | |
351 % rpeaks=sortstruct(rpeaks,'pitchstrength'); | |
352 | |
353 return | |
354 | |
355 | |
356 | |
357 | |
358 | |
359 | |
360 | |
361 | |
362 %%%%%% look for octave relationships | |
363 % | |
364 % | |
365 for i=1:length(rpeaks) % construct all maxima | |
366 % look, if the octave of the pitch is also present. | |
367 fre=rpeaks{i}.fre; | |
368 has_octave=0; | |
369 for j=1:length(rpeaks) | |
370 oct_fre=rpeaks{j}.fre; | |
371 % is the octave there? | |
372 if oct_fre > (2-octave_variability)*fre && oct_fre < (2+octave_variability)*fre | |
373 rpeaks{i}.has_octave=oct_fre; | |
374 rpeaks{i}.octave_peak_nr=j; | |
375 | |
376 % add the pss | |
377 % rpeaks{j}.pitchstrength=rpeaks{i}.pitchstrength+rpeaks{j}.pitchstrength; | |
378 | |
379 ps_real=rpeaks{j}.pitchstrength; | |
380 ps_oct=rpeaks{i}.pitchstrength; | |
381 hight_oct=rpeaks{j}.y; | |
382 hight_real=rpeaks{i}.y; | |
383 | |
384 % if ps_oct>ps_real && hight_oct > hight_real | |
385 % rpeaks{i}.pitchstrength=ps_real-1; % artificially drop down | |
386 % end | |
387 | |
388 has_octave=1; | |
389 break | |
390 end | |
391 if ~has_octave | |
392 rpeaks{i}.has_octave=0; | |
393 rpeaks{i}.octave_peak_nr=0; | |
394 end | |
395 end | |
396 end | |
397 | |
398 if plot_switch | |
399 figure(2134) | |
400 clf | |
401 hold on | |
402 plot(log_profile,'b') | |
403 plot(smooth_sig,'g') | |
404 for i=1:length(rpeaks) | |
405 time=rpeaks{i}.t; | |
406 x=rpeaks{i}.x; | |
407 y=rpeaks{i}.y; | |
408 plot(x,y,'Marker','o','Markerfacecolor','g','MarkeredgeColor','g','MarkerSize',2); | |
409 time_left=rpeaks{i}.left.t; | |
410 x_left=rpeaks{i}.left.x; | |
411 y_left=rpeaks{i}.left.y; | |
412 time_right=rpeaks{i}.right.t; | |
413 x_right=rpeaks{i}.right.x; | |
414 y_right=rpeaks{i}.right.y; | |
415 plot(x_left,y_left,'Marker','o','Markerfacecolor','r','MarkeredgeColor','r','MarkerSize',2); | |
416 plot(x_right,y_right,'Marker','o','Markerfacecolor','r','MarkeredgeColor','r','MarkerSize',2); | |
417 end | |
418 current_time=options.current_time*1000; | |
419 y=get(gca,'ylim'); | |
420 y=y(2); | |
421 text(700,y,sprintf('%3.0f ms',current_time),'verticalalignment','top'); | |
422 | |
423 for i=1:length(rpeaks) | |
424 pitchstrength=rpeaks{i}.pitchstrength; | |
425 if i <10 | |
426 line([rpeaks{i}.x rpeaks{i}.x],[rpeaks{i}.y rpeaks{i}.peak_base_height_y],'Color','m'); | |
427 line([rpeaks{i}.where_widths(1) rpeaks{i}.where_widths(2)],[rpeaks{i}.peak_base_height_y rpeaks{i}.peak_base_height_y],'Color','m'); | |
428 x=rpeaks{i}.x; | |
429 fre=rpeaks{i}.fre; | |
430 y=rpeaks{i}.y; | |
431 text(x,y*1.05,sprintf('%3.0fHz: %2.2f',fre,pitchstrength),'HorizontalAlignment','center'); | |
432 end | |
433 end | |
434 end | |
435 if plot_switch==1 | |
436 for i=1:length(rpeaks) | |
437 x=rpeaks{i}.x; | |
438 y=rpeaks{i}.y; | |
439 plot(x,y,'Marker','o','Markerfacecolor','g','MarkeredgeColor','g','MarkerSize',6); | |
440 | |
441 % plot the octaves as green lines | |
442 octave=rpeaks{i}.has_octave; | |
443 fre=rpeaks{i}.fre; | |
444 if octave>0 | |
445 oct_nr=rpeaks{i}.octave_peak_nr; | |
446 oct_fre=rpeaks{oct_nr}.fre; | |
447 | |
448 x=rpeaks{i}.x; | |
449 oct_x=rpeaks{oct_nr}.x; | |
450 y=rpeaks{i}.y; | |
451 oct_y=rpeaks{oct_nr}.y; | |
452 line([x oct_x],[y oct_y],'Color','g','LineStyle','--'); | |
453 end | |
454 end | |
455 end | |
456 | |
457 % rpeaks=sortstruct(rpeaks,'pitchstrength'); | |
458 rpeaks=sortstruct(rpeaks,'y'); | |
459 | |
460 % final result for the full set | |
461 result.final_pitchstrength=rpeaks{1}.pitchstrength; | |
462 result.final_dominant_frequency=rpeaks{1}.fre; | |
463 result.final_dominant_time=rpeaks{1}.t; | |
464 result.smoothed_signal=smooth_sig; | |
465 result.peaks=rpeaks; | |
466 | |
467 | |
468 | |
469 | |
470 function fre=x2fre(sig,x) | |
471 t_log = bin2time(sig,x); | |
472 t=f2f(t_log,0,0.035,0.001,0.035,'linlog'); | |
473 fre=1/t; |