tomwalters@0
|
1 % method of class @signal
|
tomwalters@0
|
2 %
|
tomwalters@0
|
3 % INPUT VALUES:
|
tomwalters@0
|
4 %
|
tomwalters@0
|
5 % RETURN VALUE:
|
tomwalters@0
|
6 %
|
tomwalters@0
|
7 %
|
tomwalters@0
|
8 % (c) 2003, University of Cambridge, Medical Research Council
|
tomwalters@0
|
9 % Stefan Bleeck (stefan@bleeck.de)
|
tomwalters@0
|
10 % http://www.mrc-cbu.cam.ac.uk/cnbh/aimmanual
|
tomwalters@0
|
11 % $Date: 2003/07/17 10:56:16 $
|
tomwalters@0
|
12 % $Revision: 1.2 $
|
tomwalters@0
|
13
|
tomwalters@0
|
14 function filtered_sig=bandpass(sig,lowfrequency,highfrequency,stopbandwidth_low,stopbandwidth_high,ripple,stopbandatten)
|
tomwalters@0
|
15 % hack for an phase true bandpassfilter with cutoff at frequency
|
tomwalters@0
|
16 % used is a ButterworthFilter
|
tomwalters@0
|
17 % this is all crap, but it does not work properly otherwise.
|
tomwalters@0
|
18
|
tomwalters@0
|
19 grafix=0;
|
tomwalters@0
|
20
|
tomwalters@0
|
21 if nargin < 7
|
tomwalters@0
|
22 stopbandatten=60; % in dB - how many dB the signal is reduced in the stopband at least
|
tomwalters@0
|
23 end
|
tomwalters@0
|
24 if nargin < 6
|
tomwalters@0
|
25 ripple=3; % in dB = ripple in the passband
|
tomwalters@0
|
26 end
|
tomwalters@0
|
27 if nargin < 5
|
tomwalters@0
|
28 stopbandwidth_high=highfrequency*2; % one octave above
|
tomwalters@0
|
29 end
|
tomwalters@0
|
30 if nargin < 4
|
tomwalters@0
|
31 stopbandwidth_low=lowfrequency/2; % one octave above
|
tomwalters@0
|
32 end
|
tomwalters@0
|
33
|
tomwalters@0
|
34 % I dont understand enough to make it work with a butterwort filer.
|
tomwalters@0
|
35 % easy solution: first perform a lowpass, then a highpass filter...
|
tomwalters@0
|
36 % sorry, Thanks for any help!
|
tomwalters@0
|
37 if grafix
|
tomwalters@0
|
38 figure(23534)
|
tomwalters@0
|
39 plot(powerspectrum(sig),[100,getsr(sig)/2],'b')
|
tomwalters@0
|
40 hold on
|
tomwalters@0
|
41 end
|
tomwalters@0
|
42
|
tomwalters@0
|
43 if highfrequency>0
|
tomwalters@0
|
44 filtered_sig_low=lowpass(sig,highfrequency,highfrequency+stopbandwidth_high,ripple,stopbandatten);
|
tomwalters@0
|
45 else
|
tomwalters@0
|
46 filtered_sig_low=sig;
|
tomwalters@0
|
47 end
|
tomwalters@0
|
48
|
tomwalters@0
|
49 if grafix
|
tomwalters@0
|
50 figure(23534)
|
tomwalters@0
|
51 plot(powerspectrum(filtered_sig_low),[100,getsr(filtered_sig_low)/2],'r')
|
tomwalters@0
|
52 end
|
tomwalters@0
|
53
|
tomwalters@0
|
54
|
tomwalters@0
|
55 if lowfrequency>0
|
tomwalters@0
|
56 filtered_sig=highpass(filtered_sig_low,lowfrequency,lowfrequency-stopbandwidth_low,ripple,stopbandatten);
|
tomwalters@0
|
57 if grafix
|
tomwalters@0
|
58 figure(23534)
|
tomwalters@0
|
59 plot(powerspectrum(filtered_sig),[100,getsr(filtered_sig_low)/2],'g')
|
tomwalters@0
|
60 end
|
tomwalters@0
|
61
|
tomwalters@0
|
62
|
tomwalters@0
|
63 return
|
tomwalters@0
|
64
|
tomwalters@0
|
65
|
tomwalters@0
|
66 % if nargin < 4
|
tomwalters@0
|
67 % ripple=1; % in dB = ripple in the passband
|
tomwalters@0
|
68 % end
|
tomwalters@0
|
69 % if nargin <3
|
tomwalters@0
|
70 % stopband=frequency*2; % eine Oktave drüber
|
tomwalters@0
|
71 % end
|
tomwalters@0
|
72
|
tomwalters@0
|
73 ripple=3;
|
tomwalters@0
|
74
|
tomwalters@0
|
75 nyquist=getsr(sig)/2;
|
tomwalters@0
|
76 % fre_low=2;
|
tomwalters@0
|
77 % fre_high=frequency;
|
tomwalters@0
|
78
|
tomwalters@0
|
79 Wpass=[lowfrequency highfrequency]/nyquist;
|
tomwalters@0
|
80 Wstop=[lowfrequency-stopbandwidth highfrequency+stopbandwidth]/nyquist;
|
tomwalters@0
|
81 [n,Wn] = buttord(Wpass,Wstop,ripple,stopbandatten);
|
tomwalters@0
|
82 % [n,Wn] = buttord(fre_high/nyquist,(fre_high+stopband)/nyquist,ripple,stopbandatten);
|
tomwalters@0
|
83 % Berechne den IIR-Filter
|
tomwalters@0
|
84 [b,a] = butter(n,Wn);
|
tomwalters@0
|
85
|
tomwalters@0
|
86 % zum testen:
|
tomwalters@0
|
87 freqz(b,a,128,getsr(sig))
|
tomwalters@0
|
88
|
tomwalters@0
|
89 vals=sig.werte';
|
tomwalters@0
|
90
|
tomwalters@0
|
91 % fill the part behind the signal and in front of the signal with
|
tomwalters@0
|
92 % values
|
tomwalters@0
|
93 % firstval=vals(1);
|
tomwalters@0
|
94 % lastval=vals(end);
|
tomwalters@0
|
95 % nr_vals=length(vals);
|
tomwalters@0
|
96 % vals=[ones(1,nr_vals)*firstval vals ones(1,nr_vals)*lastval];
|
tomwalters@0
|
97
|
tomwalters@0
|
98 plot(vals)
|
tomwalters@0
|
99 hold on
|
tomwalters@0
|
100
|
tomwalters@0
|
101 nvals = filter(b,a,vals);
|
tomwalters@0
|
102 % nvals = filtfilt(b,a,vals);
|
tomwalters@0
|
103 % extract the values back
|
tomwalters@0
|
104 % nvals=nvals(nr_vals+1:2*nr_vals);
|
tomwalters@0
|
105
|
tomwalters@0
|
106 plot(nvals,'r')
|
tomwalters@0
|
107
|
tomwalters@0
|
108 % filtered_sig=0;
|
tomwalters@0
|
109 % return
|
tomwalters@0
|
110
|
tomwalters@0
|
111 filtered_sig=sig; % a copy of the old one
|
tomwalters@0
|
112 newname=sprintf('Bandpass filterd (%3.2fkHz - %3.2fkHz) Signal: %s',lowfrequency/1000,highfrequency/1000,getname(sig));
|
tomwalters@0
|
113 filtered_sig=setname(filtered_sig,newname);
|
tomwalters@0
|
114 filtered_sig.werte=nvals';
|
tomwalters@0
|
115
|
tomwalters@0
|
116 % figure(235423)
|
tomwalters@0
|
117 % plot(sig);
|
tomwalters@0
|
118 % hold on
|
tomwalters@0
|
119 % plot(filtered_sig,'g');
|
tomwalters@0
|
120 % s=0;
|