tomwalters@0
|
1 %
|
tomwalters@0
|
2 % Gammachirp : Theoretical auditory filter
|
tomwalters@0
|
3 % Toshio IRINO
|
tomwalters@0
|
4 % 7 Apr. 97 (additional comments)
|
tomwalters@0
|
5 % 20 Aug. 97 (Simplify & Carrier Selection)
|
tomwalters@0
|
6 % 10 Jun. 98 (SwNorm)
|
tomwalters@0
|
7 % 26 Nov. 98 (phase = phase + c ln fr/f0)
|
tomwalters@0
|
8 % 7 Jan. 2002 (adding 'envelope' option)
|
tomwalters@0
|
9 % 22 Nov. 2002 (debugging 'peak' option)
|
tomwalters@0
|
10 %
|
tomwalters@0
|
11 % gc(t) = t^(n-1) exp(-2 pi b ERB(Frs)) cos(2*pi*Frs*t + c ln t + phase)
|
tomwalters@0
|
12 %
|
tomwalters@0
|
13 % function [GC, LenGC, Fps, InstFreq ] ...
|
tomwalters@0
|
14 % = GammaChirp(Frs,SR,OrderG,CoefERBw,CoefC,Phase,SwCarr,SwNorm);
|
tomwalters@0
|
15 % INPUT : Frs : Asymptotic Frequency ( vector )
|
tomwalters@0
|
16 % SR : Sampling Frequency
|
tomwalters@0
|
17 % OrderG : Order of Gamma function t^(OrderG-1) == n
|
tomwalters@0
|
18 % CoefERBw: Coeficient -> exp(-2*pi*CoefERBw*ERB(f)) == b
|
tomwalters@0
|
19 % CoefC : Coeficient -> exp(j*2*pi*Frs + CoefC*ln(t)) == c
|
tomwalters@0
|
20 % Phase : Start Phase(0 ~ 2*pi)
|
tomwalters@0
|
21 % SwCarr : Carrier ('cos','sin','complex','envelope': 3 letters)
|
tomwalters@0
|
22 % SwNorm : Normalization of peak spectrum level ('no', 'peak')
|
tomwalters@0
|
23 % OUTPUT: GC : GammaChirp ( matrix )
|
tomwalters@0
|
24 % LenGC : Length of GC for each channel ( vector )
|
tomwalters@0
|
25 % Fps : Peak Frequency ( vector )
|
tomwalters@0
|
26 % InstFreq: Instanteneous Frequency ( matrix )
|
tomwalters@0
|
27 %
|
tomwalters@0
|
28 %
|
tomwalters@0
|
29 function [GC, LenGC, Fps, InstFreq ] ...
|
tomwalters@0
|
30 = GammaChirp(Frs,SR,OrderG,CoefERBw,CoefC,Phase,SwCarr,SwNorm);
|
tomwalters@0
|
31
|
tomwalters@0
|
32 if nargin < 2, help GammaChirp; return; end;
|
tomwalters@0
|
33 Frs = Frs(:);
|
tomwalters@0
|
34 NumCh = length(Frs);
|
tomwalters@0
|
35 if nargin < 3, OrderG = []; end;
|
tomwalters@0
|
36 if length(OrderG) == 0, OrderG = 4; end; % Default GammaTone
|
tomwalters@0
|
37 if length(OrderG) == 1, OrderG = OrderG*ones(NumCh,1); end;
|
tomwalters@0
|
38 if nargin < 4, CoefERBw = []; end;
|
tomwalters@0
|
39 if length(CoefERBw) == 0, CoefERBw = 1.019; end; % Default GammaTone
|
tomwalters@0
|
40 if length(CoefERBw) == 1, CoefERBw = CoefERBw*ones(NumCh,1); end;
|
tomwalters@0
|
41 if nargin < 5, CoefC = []; end;
|
tomwalters@0
|
42 if length(CoefC) == 0, CoefC = 0; end; % Default GammaTone
|
tomwalters@0
|
43 if length(CoefC) == 1, CoefC = CoefC*ones(NumCh,1); end;
|
tomwalters@0
|
44 if nargin < 6, Phase = []; end;
|
tomwalters@0
|
45 if length(Phase) == 0, Phase = 0; end;
|
tomwalters@0
|
46 if length(Phase) == 1, Phase = Phase*ones(NumCh,1); end;
|
tomwalters@0
|
47 if nargin < 7, SwCarr = []; end;
|
tomwalters@0
|
48 if length(SwCarr) == 0, SwCarr = 'cos'; end;
|
tomwalters@0
|
49 if nargin < 8, SwNorm = []; end;
|
tomwalters@0
|
50 if length(SwNorm) == 0, SwNorm = 'no'; end;
|
tomwalters@0
|
51
|
tomwalters@0
|
52
|
tomwalters@0
|
53 [ERBrate ERBw] = Freq2ERB(Frs); % G&M (1990)
|
tomwalters@0
|
54 LenGC1kHz = (40*max(OrderG)/max(CoefERBw) + 200)*SR/16000; % 2 Aug 96
|
tomwalters@0
|
55 [dummy ERBw1kHz] = Freq2ERB(1000);
|
tomwalters@0
|
56
|
tomwalters@0
|
57 if strcmp(SwCarr,'sin'), Phase = Phase - pi/2*ones(1,NumCh); end;
|
tomwalters@0
|
58 %%% Phase compensation
|
tomwalters@0
|
59 Phase = Phase + CoefC.*log(Frs/1000); % relative phase to 1kHz
|
tomwalters@0
|
60
|
tomwalters@0
|
61 LenGC = fix(LenGC1kHz*ERBw1kHz./ERBw);
|
tomwalters@0
|
62
|
tomwalters@0
|
63 %%%%% Production of GammaChirp %%%%%
|
tomwalters@0
|
64 GC = zeros(NumCh,max(LenGC));
|
tomwalters@0
|
65 if nargout > 2, Fps = Fr2Fpeak(OrderG,CoefERBw,CoefC,Frs); end; % Peak Freq.
|
tomwalters@0
|
66 if nargout > 3, InstFreq = zeros(NumCh,max(LenGC)); end;
|
tomwalters@0
|
67
|
tomwalters@0
|
68
|
tomwalters@0
|
69 for nch = 1:NumCh,
|
tomwalters@0
|
70 t = (1:LenGC(nch)-1)/SR;
|
tomwalters@0
|
71
|
tomwalters@0
|
72 GammaEnv = t.^(OrderG(nch)-1).*exp(-2*pi*CoefERBw(nch)*ERBw(nch)*t);
|
tomwalters@0
|
73 GammaEnv = [ 0 GammaEnv/max(GammaEnv)];
|
tomwalters@0
|
74
|
tomwalters@0
|
75 if strcmp(SwCarr(1:3),'env') % envelope
|
tomwalters@0
|
76 Carrier = ones(size(GammaEnv));
|
tomwalters@0
|
77 elseif strcmp(SwCarr(1:3),'com') % complex
|
tomwalters@0
|
78 Carrier = [ 0 exp(i * (2*pi*Frs(nch)*t + CoefC(nch)*log(t) +Phase(nch)) )];
|
tomwalters@0
|
79 else
|
tomwalters@0
|
80 Carrier = [ 0 cos(2*pi*Frs(nch)*t + CoefC(nch)*log(t) +Phase(nch))];
|
tomwalters@0
|
81 end;
|
tomwalters@0
|
82
|
tomwalters@0
|
83 GC(nch,1:LenGC(nch)) = GammaEnv.*Carrier;
|
tomwalters@0
|
84
|
tomwalters@0
|
85 if nargout > 3,
|
tomwalters@0
|
86 InstFreq(nch,1:LenGC(nch)) = [0, [Frs(nch) + CoefC(nch)./(2*pi*t)]];
|
tomwalters@0
|
87 end;
|
tomwalters@0
|
88
|
tomwalters@0
|
89 if strcmp(SwNorm,'peak') == 1, % peak gain normalization
|
tomwalters@0
|
90 [frsp freq] = freqz(GC(nch,1:LenGC(nch)),1,LenGC(nch),SR);
|
tomwalters@0
|
91 fp = Fr2Fpeak(OrderG(nch),CoefERBw(nch),CoefC(nch),Frs(nch));
|
tomwalters@0
|
92 [dummy np] = min(abs(freq-fp));
|
tomwalters@0
|
93 GC(nch,:) = GC(nch,:)/abs(frsp(np));
|
tomwalters@0
|
94 end;
|
tomwalters@0
|
95
|
tomwalters@0
|
96 end; % nch = ...
|
tomwalters@0
|
97
|
tomwalters@0
|
98 return
|
tomwalters@0
|
99
|
tomwalters@0
|
100 %% ERBw = 0.128*Frs; % Complete Constant Q only for check.
|
tomwalters@0
|
101
|
tomwalters@0
|
102 % old
|
tomwalters@0
|
103 % Amp = ones(NumCh,1); % No normalization
|
tomwalters@0
|
104 % if strcmp(SwNorm,'peak'), Amp = ERBw./ERBw1kHz; end; % Peak spectrum==const.
|
tomwalters@0
|
105 % when it is gammatone
|
tomwalters@0
|
106 % if strcmp(SwNorm,'peak'), ...
|
tomwalters@0
|
107 % Amp = 2.815*sqrt(4/OrderG).*CoefERBw.*ERBw/SR; end;
|
tomwalters@0
|
108 % Peak spectrum==const. The gain is 1.0 when filtering sinusoid at cf.
|
tomwalters@0
|
109 % GC(nch,:) = GC(nch,:)/max(abs(freqz(GC(nch,:),1,LenGC(nch))));
|
tomwalters@0
|
110 %
|