tomwalters@294: #!/usr/bin/env python tomwalters@294: # encoding: utf-8 tomwalters@294: # tomwalters@294: # AIM-C: A C++ implementation of the Auditory Image Model tomwalters@294: # http://www.acousticscale.org/AIMC tomwalters@294: # tomwalters@318: # Licensed under the Apache License, Version 2.0 (the "License"); tomwalters@318: # you may not use this file except in compliance with the License. tomwalters@318: # You may obtain a copy of the License at tomwalters@294: # tomwalters@318: # http://www.apache.org/licenses/LICENSE-2.0 tomwalters@294: # tomwalters@318: # Unless required by applicable law or agreed to in writing, software tomwalters@318: # distributed under the License is distributed on an "AS IS" BASIS, tomwalters@318: # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. tomwalters@318: # See the License for the specific language governing permissions and tomwalters@318: # limitations under the License. tomwalters@294: """ tomwalters@294: Profiles_test.py tomwalters@294: tomwalters@294: Created by Thomas Walters on 2010-02-22. tomwalters@294: Copyright 2010 Thomas Walters tomwalters@294: Test the AIM-C model from filterbank to SSI profiles tomwalters@294: """ tomwalters@294: tomwalters@294: import aimc tomwalters@294: from scipy.io import wavfile tomwalters@294: from scipy import io tomwalters@294: import scipy tomwalters@294: import pylab tomwalters@294: from itertools import izip, chain, repeat tomwalters@294: tomwalters@294: def grouper(n, iterable, padvalue=None): tomwalters@294: "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')" tomwalters@294: return izip(*[chain(iterable, repeat(padvalue, n-1))]*n) tomwalters@294: tomwalters@294: def main(): tomwalters@294: wave_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/Sounds/" tomwalters@294: features_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/work08-jess-original-rec_rubber/features/" tomwalters@294: tomwalters@294: file_name = "aa/aa161.1p119.4s100.0t+000itd" tomwalters@294: tomwalters@294: wave_suffix = ".wav" tomwalters@294: features_suffix = ".mat" tomwalters@294: tomwalters@294: frame_period_ms = 10; tomwalters@294: tomwalters@294: wave_filename = wave_path + file_name + wave_suffix tomwalters@294: features_filename = features_path + file_name + features_suffix tomwalters@294: tomwalters@294: (sample_rate, input_wave) = wavfile.read(wave_filename) tomwalters@294: wave_length = input_wave.size tomwalters@294: buffer_length = int(frame_period_ms * sample_rate / 1000) tomwalters@294: tomwalters@294: #pylab.plot(input_wave) tomwalters@294: #pylab.show() tomwalters@294: tomwalters@294: input_sig = aimc.SignalBank() tomwalters@294: input_sig.Initialize(1, buffer_length, sample_rate) tomwalters@294: parameters = aimc.Parameters() tomwalters@294: parameters.Load("src/Scripts/profile_features.cfg") tomwalters@294: mod_gt = aimc.ModuleGammatone(parameters) tomwalters@294: mod_hl = aimc.ModuleHCL(parameters) tomwalters@294: mod_profile = aimc.ModuleSlice(parameters) tomwalters@294: mod_scaler = aimc.ModuleScaler(parameters) tomwalters@294: mod_features = aimc.ModuleGaussians(parameters) tomwalters@294: mod_gt.AddTarget(mod_hl) tomwalters@294: mod_hl.AddTarget(mod_profile) tomwalters@294: mod_profile.AddTarget(mod_scaler) tomwalters@294: mod_scaler.AddTarget(mod_features) tomwalters@294: mod_gt.Initialize(input_sig) tomwalters@294: tomwalters@294: correct_count = 0; tomwalters@294: incorrect_count = 0; tomwalters@294: tomwalters@294: scaled_wave = [] tomwalters@294: for sample in input_wave: tomwalters@294: scaled_wave.append(float(sample / float(pow(2,15) - 1))) tomwalters@294: i = 0 tomwalters@294: tomwalters@294: wave_chunks = grouper(buffer_length, scaled_wave, 0) tomwalters@294: tomwalters@294: out_frames = [] tomwalters@294: for chunk in wave_chunks: tomwalters@294: i = 0 tomwalters@294: for sample in chunk: tomwalters@294: input_sig.set_sample(0, i, float(sample)) tomwalters@294: i += 1 tomwalters@294: mod_gt.Process(input_sig) tomwalters@294: out_sig = mod_features.GetOutputBank() tomwalters@294: tomwalters@294: channel_count = out_sig.channel_count() tomwalters@294: out_buffer_length = out_sig.buffer_length() tomwalters@294: cfs = scipy.zeros((channel_count)) tomwalters@294: out = scipy.zeros((channel_count, out_buffer_length)) tomwalters@294: tomwalters@294: for ch in range(0, channel_count): tomwalters@294: for i in range(0, out_buffer_length): tomwalters@294: out[ch, i] = out_sig.sample(ch, i) tomwalters@294: out_frames.append(out) tomwalters@294: tomwalters@294: outmat = dict(profile_out=out_frames) tomwalters@294: io.savemat("src/Scripts/features_out.mat", outmat) tomwalters@294: tomwalters@294: pass tomwalters@294: tomwalters@294: tomwalters@294: if __name__ == '__main__': tomwalters@294: main()