tomwalters@276: // Copyright 2009-2010, Thomas Walters tomwalters@276: // tomwalters@276: // AIM-C: A C++ implementation of the Auditory Image Model tomwalters@276: // http://www.acousticscale.org/AIMC tomwalters@276: // tomwalters@318: // Licensed under the Apache License, Version 2.0 (the "License"); tomwalters@318: // you may not use this file except in compliance with the License. tomwalters@318: // You may obtain a copy of the License at tomwalters@276: // tomwalters@318: // http://www.apache.org/licenses/LICENSE-2.0 tomwalters@276: // tomwalters@318: // Unless required by applicable law or agreed to in writing, software tomwalters@318: // distributed under the License is distributed on an "AS IS" BASIS, tomwalters@318: // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. tomwalters@318: // See the License for the specific language governing permissions and tomwalters@318: // limitations under the License. tomwalters@276: tomwalters@276: /*! \file tomwalters@276: * \brief Slaney's gammatone filterbank tomwalters@276: * tomwalters@276: * \author Thomas Walters tomwalters@276: * \date created 2009/11/13 tomwalters@276: * \version \$Id$ tomwalters@276: */ tomwalters@276: tomwalters@287: #include tomwalters@276: #include tomwalters@277: #include "Support/ERBTools.h" tomwalters@276: tomwalters@276: #include "Modules/BMM/ModuleGammatone.h" tomwalters@276: tomwalters@276: namespace aimc { tomwalters@277: using std::vector; tomwalters@276: using std::complex; tomwalters@276: ModuleGammatone::ModuleGammatone(Parameters *params) : Module(params) { tomwalters@277: module_identifier_ = "gt"; tomwalters@276: module_type_ = "bmm"; tomwalters@276: module_description_ = "Gammatone filterbank (Slaney's IIR gammatone)"; tomwalters@276: module_version_ = "$Id$"; tomwalters@276: tomwalters@276: num_channels_ = parameters_->DefaultInt("gtfb.channel_count", 200); tomwalters@276: min_frequency_ = parameters_->DefaultFloat("gtfb.min_frequency", 86.0f); tomwalters@276: max_frequency_ = parameters_->DefaultFloat("gtfb.max_frequency", 16000.0f); tomwalters@276: } tomwalters@276: tomwalters@277: ModuleGammatone::~ModuleGammatone() { tomwalters@277: } tomwalters@277: tomwalters@277: void ModuleGammatone::ResetInternal() { tomwalters@288: state_1_.resize(num_channels_); tomwalters@288: state_2_.resize(num_channels_); tomwalters@288: state_3_.resize(num_channels_); tomwalters@288: state_4_.resize(num_channels_); tomwalters@277: for (int i = 0; i < num_channels_; ++i) { tomwalters@402: state_1_[i].clear(); tomwalters@288: state_1_[i].resize(3, 0.0f); tomwalters@402: state_2_[i].clear(); tomwalters@288: state_2_[i].resize(3, 0.0f); tomwalters@402: state_3_[i].clear(); tomwalters@288: state_3_[i].resize(3, 0.0f); tomwalters@402: state_4_[i].clear(); tomwalters@288: state_4_[i].resize(3, 0.0f); tomwalters@277: } tomwalters@277: } tomwalters@277: tomwalters@276: bool ModuleGammatone::InitializeInternal(const SignalBank& input) { tomwalters@276: // Calculate number of channels, and centre frequencies tomwalters@277: float erb_max = ERBTools::Freq2ERB(max_frequency_); tomwalters@277: float erb_min = ERBTools::Freq2ERB(min_frequency_); tomwalters@277: float delta_erb = (erb_max - erb_min) / (num_channels_ - 1); tomwalters@277: tomwalters@277: centre_frequencies_.resize(num_channels_); tomwalters@277: float erb_current = erb_min; tomwalters@277: tomwalters@288: output_.Initialize(num_channels_, tomwalters@288: input.buffer_length(), tomwalters@288: input.sample_rate()); tomwalters@288: tomwalters@277: for (int i = 0; i < num_channels_; ++i) { tomwalters@280: centre_frequencies_[i] = ERBTools::ERB2Freq(erb_current); tomwalters@280: erb_current += delta_erb; tomwalters@288: output_.set_centre_frequency(i, centre_frequencies_[i]); tomwalters@277: } tomwalters@276: tomwalters@288: a_.resize(num_channels_); tomwalters@288: b1_.resize(num_channels_); tomwalters@288: b2_.resize(num_channels_); tomwalters@288: b3_.resize(num_channels_); tomwalters@288: b4_.resize(num_channels_); tomwalters@288: state_1_.resize(num_channels_); tomwalters@288: state_2_.resize(num_channels_); tomwalters@288: state_3_.resize(num_channels_); tomwalters@288: state_4_.resize(num_channels_); tomwalters@276: tomwalters@276: for (int ch = 0; ch < num_channels_; ++ch) { tomwalters@288: double cf = centre_frequencies_[ch]; tomwalters@288: double erb = ERBTools::Freq2ERBw(cf); tomwalters@290: // LOG_INFO("%e", erb); tomwalters@276: tomwalters@276: // Sample interval tomwalters@288: double dt = 1.0f / input.sample_rate(); tomwalters@276: tomwalters@276: // Bandwidth parameter tomwalters@288: double b = 1.019f * 2.0f * M_PI * erb; tomwalters@276: tomwalters@288: // The following expressions are derived in Apple TR #35, "An tomwalters@280: // Efficient Implementation of the Patterson-Holdsworth Cochlear tomwalters@288: // Filter Bank" and used in Malcolm Slaney's auditory toolbox, where he tomwalters@288: // defines this alternaltive four stage cascade of second-order filters. tomwalters@276: tomwalters@276: // Calculate the gain: tomwalters@288: double cpt = cf * M_PI * dt; tomwalters@288: complex exponent(0.0, 2.0 * cpt); tomwalters@288: complex ec = exp(2.0 * exponent); tomwalters@288: complex two_cf_pi_t(2.0 * cpt, 0.0); tomwalters@288: complex two_pow(pow(2.0, (3.0 / 2.0)), 0.0); tomwalters@290: complex p1 = -2.0 * ec * dt; tomwalters@290: complex p2 = 2.0 * exp(-(b * dt) + exponent) * dt; tomwalters@288: complex b_dt(b * dt, 0.0); tomwalters@276: tomwalters@288: double gain = abs( tomwalters@290: (p1 + p2 * (cos(two_cf_pi_t) - sqrt(3.0 - two_pow) * sin(two_cf_pi_t))) tomwalters@290: * (p1 + p2 * (cos(two_cf_pi_t) + sqrt(3.0 - two_pow) * sin(two_cf_pi_t))) tomwalters@290: * (p1 + p2 * (cos(two_cf_pi_t) - sqrt(3.0 + two_pow) * sin(two_cf_pi_t))) tomwalters@290: * (p1 + p2 * (cos(two_cf_pi_t) + sqrt(3.0 + two_pow) * sin(two_cf_pi_t))) tomwalters@290: / pow((-2.0 / exp(2.0 * b_dt) - 2.0 * ec + 2.0 * (1.0 + ec) tomwalters@290: / exp(b_dt)), 4)); tomwalters@291: // LOG_INFO("%e", gain); tomwalters@276: tomwalters@276: // The filter coefficients themselves: tomwalters@288: const int coeff_count = 3; tomwalters@288: a_[ch].resize(coeff_count, 0.0f); tomwalters@288: b1_[ch].resize(coeff_count, 0.0f); tomwalters@288: b2_[ch].resize(coeff_count, 0.0f); tomwalters@288: b3_[ch].resize(coeff_count, 0.0f); tomwalters@288: b4_[ch].resize(coeff_count, 0.0f); tomwalters@288: state_1_[ch].resize(coeff_count, 0.0f); tomwalters@288: state_2_[ch].resize(coeff_count, 0.0f); tomwalters@288: state_3_[ch].resize(coeff_count, 0.0f); tomwalters@288: state_4_[ch].resize(coeff_count, 0.0f); tomwalters@276: tomwalters@288: double B0 = dt; tomwalters@288: double B2 = 0.0f; tomwalters@276: tomwalters@288: double B11 = -(2.0f * dt * cos(2.0f * cf * M_PI * dt) / exp(b * dt) tomwalters@288: + 2.0f * sqrt(3 + pow(2.0f, 1.5f)) * dt tomwalters@288: * sin(2.0f * cf * M_PI * dt) / exp(b * dt)) / 2.0f; tomwalters@288: double B12 = -(2.0f * dt * cos(2.0f * cf * M_PI * dt) / exp(b * dt) tomwalters@288: - 2.0f * sqrt(3 + pow(2.0f, 1.5f)) * dt tomwalters@288: * sin(2.0f * cf * M_PI * dt) / exp(b * dt)) / 2.0f; tomwalters@288: double B13 = -(2.0f * dt * cos(2.0f * cf * M_PI * dt) / exp(b * dt) tomwalters@288: + 2.0f * sqrt(3 - pow(2.0f, 1.5f)) * dt tomwalters@288: * sin(2.0f * cf * M_PI * dt) / exp(b * dt)) / 2.0f; tomwalters@288: double B14 = -(2.0f * dt * cos(2.0f * cf * M_PI * dt) / exp(b * dt) tomwalters@288: - 2.0f * sqrt(3 - pow(2.0f, 1.5f)) * dt tomwalters@289: * sin(2.0f * cf * M_PI * dt) / exp(b * dt)) / 2.0f; tomwalters@288: tomwalters@288: a_[ch][0] = 1.0f; tomwalters@288: a_[ch][1] = -2.0f * cos(2.0f * cf * M_PI * dt) / exp(b * dt); tomwalters@288: a_[ch][2] = exp(-2.0f * b * dt); tomwalters@288: b1_[ch][0] = B0 / gain; tomwalters@288: b1_[ch][1] = B11 / gain; tomwalters@288: b1_[ch][2] = B2 / gain; tomwalters@288: b2_[ch][0] = B0; tomwalters@288: b2_[ch][1] = B12; tomwalters@288: b2_[ch][2] = B2; tomwalters@288: b3_[ch][0] = B0; tomwalters@288: b3_[ch][1] = B13; tomwalters@288: b3_[ch][2] = B2; tomwalters@288: b4_[ch][0] = B0; tomwalters@288: b4_[ch][1] = B14; tomwalters@288: b4_[ch][2] = B2; tomwalters@276: } tomwalters@277: return true; tomwalters@276: } tomwalters@277: tomwalters@277: void ModuleGammatone::Process(const SignalBank &input) { tomwalters@277: output_.set_start_time(input.start_time()); tomwalters@277: int audio_channel = 0; tomwalters@277: tomwalters@288: vector >::iterator b1 = b1_.begin(); tomwalters@288: vector >::iterator b2 = b2_.begin(); tomwalters@288: vector >::iterator b3 = b3_.begin(); tomwalters@288: vector >::iterator b4 = b4_.begin(); tomwalters@288: vector >::iterator a = a_.begin(); tomwalters@288: vector >::iterator s1 = state_1_.begin(); tomwalters@288: vector >::iterator s2 = state_2_.begin(); tomwalters@288: vector >::iterator s3 = state_3_.begin(); tomwalters@288: vector >::iterator s4 = state_4_.begin(); tomwalters@277: tomwalters@288: // Temporary storage between filter stages tomwalters@288: vector out(input.buffer_length()); tomwalters@288: for (int ch = 0; ch < num_channels_; tomwalters@288: ++ch, ++b1, ++b2, ++b3, ++b4, ++a, ++s1, ++s2, ++s3, ++s4) { tomwalters@277: for (int i = 0; i < input.buffer_length(); ++i) { tomwalters@280: // Direct-form-II IIR filter tomwalters@288: double in = input.sample(audio_channel, i); tomwalters@288: out[i] = (*b1)[0] * in + (*s1)[0]; tomwalters@288: for (unsigned int stage = 1; stage < s1->size(); ++stage) tomwalters@288: (*s1)[stage - 1] = (*b1)[stage] * in tomwalters@288: - (*a)[stage] * out[i] + (*s1)[stage]; tomwalters@288: } tomwalters@288: for (int i = 0; i < input.buffer_length(); ++i) { tomwalters@288: // Direct-form-II IIR filter tomwalters@288: double in = out[i]; tomwalters@288: out[i] = (*b2)[0] * in + (*s2)[0]; tomwalters@288: for (unsigned int stage = 1; stage < s2->size(); ++stage) tomwalters@288: (*s2)[stage - 1] = (*b2)[stage] * in tomwalters@288: - (*a)[stage] * out[i] + (*s2)[stage]; tomwalters@288: } tomwalters@288: for (int i = 0; i < input.buffer_length(); ++i) { tomwalters@288: // Direct-form-II IIR filter tomwalters@288: double in = out[i]; tomwalters@288: out[i] = (*b3)[0] * in + (*s3)[0]; tomwalters@288: for (unsigned int stage = 1; stage < s3->size(); ++stage) tomwalters@288: (*s3)[stage - 1] = (*b3)[stage] * in tomwalters@288: - (*a)[stage] * out[i] + (*s3)[stage]; tomwalters@288: } tomwalters@288: for (int i = 0; i < input.buffer_length(); ++i) { tomwalters@288: // Direct-form-II IIR filter tomwalters@288: double in = out[i]; tomwalters@288: out[i] = (*b4)[0] * in + (*s4)[0]; tomwalters@288: for (unsigned int stage = 1; stage < s4->size(); ++stage) tomwalters@288: (*s4)[stage - 1] = (*b4)[stage] * in tomwalters@288: - (*a)[stage] * out[i] + (*s4)[stage]; tomwalters@288: output_.set_sample(ch, i, out[i]); tomwalters@277: } tomwalters@277: } tomwalters@277: PushOutput(); tomwalters@277: } tomwalters@277: tomwalters@280: } // namespace aimc