tomwalters@54: #!/bin/bash tomwalters@54: # Copyright 2010 Thomas Walters tomwalters@54: # tomwalters@54: # Run a series of experiments which compare MFCC features generated by HTK to tomwalters@54: # AIM features generated using AIM-C using a series of syllable recogntiton tomwalters@54: # tasks. tomwalters@201: # This script expects to be run from within the AIM-C source tree. tomwalters@212: # It builds the HTK binaries and AIM-C AIMCopy binary if they're not tomwalters@212: # present. tomwalters@201: # The following environment varaibles should be set before this script is run: tomwalters@201: # SYLLABLES_DATABASE_URL - URL of a tar file containing the CNBH syllables tomwalters@201: # database in FLAC format tomwalters@212: # HTK_USERNAME and HTK_PASSWORD - username and password for the site at tomwalters@201: # http://htk.eng.cam.ac.uk/ tomwalters@209: # NUMBER_OF_CORES - total number of machine cores tomwalters@201: tomwalters@239: sudo apt-get -y update tomwalters@239: sudo apt-get -y install bc subversion scons pkg-config \ tomwalters@239: libsndfile1-dev build-essential libboost-dev \ tomwalters@240: python sox python-matplotlib libcairo-dev tomwalters@239: tomwalters@239: # For 64-bit systems, uncomment this line: tomwalters@239: sudo apt-get -y install libc6-dev-i386 tomwalters@239: tomwalters@54: # Set these to be the location of your input database, and desired output tomwalters@212: # locations. (Note: the user running this script needs write permissions on tomwalters@212: # the $WORKING_VOLUME.) tomwalters@243: WORKING_VOLUME=/mnt/scratch0/aim tomwalters@212: tomwalters@212: SYLLABLES_DATABASE_TAR=$WORKING_VOLUME/001-downloaded_sounds_data/cnbh-syllables.tar tomwalters@212: SOUNDS_ROOT=$WORKING_VOLUME/002-sounds/ tomwalters@212: FEATURES_ROOT=$WORKING_VOLUME/003-features/ tomwalters@212: HMMS_ROOT=$WORKING_VOLUME/004-hmms/ tomwalters@212: HTK_ROOT=$WORKING_VOLUME/software/htk/ tomwalters@212: AIMC_ROOT=$WORKING_VOLUME/software/aimc/ tomwalters@128: tomwalters@242: THIS_DIR=`dirname $0` tomwalters@241: AIMCOPY_CONFIGURATION_FILE=$THIS_DIR/cnbh-syllables/feature_generation/ssi_profile_features.aimcopycfg tomwalters@239: tomwalters@54: # Number of cores on the experimental machine. Various scripts will try to use tomwalters@54: # this if it's set. tomwalters@209: # NUMBER_OF_CORES=8 tomwalters@54: tomwalters@54: # Fail if any command fails tomwalters@54: set -e tomwalters@54: tomwalters@54: # Fail if any variable is unset tomwalters@54: set -u tomwalters@54: tomwalters@212: ###### tomwalters@212: # Step 001 - Get the sounds database tomwalters@178: if [ ! -e $SYLLABLES_DATABASE_TAR ]; then tomwalters@212: mkdir -p `dirname $SYLLABLES_DATABASE_TAR` tomwalters@178: wget -O $SYLLABLES_DATABASE_TAR $SYLLABLES_DATABASE_URL tomwalters@178: fi tomwalters@178: tomwalters@54: if [ ! -d $SOUNDS_ROOT ]; then tomwalters@212: mkdir -p $SOUNDS_ROOT tomwalters@54: fi tomwalters@54: tomwalters@212: # Untar the CNBH syllables database, and convert the files from FLAC to WAV. tomwalters@54: if [ ! -e $SOUNDS_ROOT/.untar_db_success ]; then tomwalters@54: tar -x -C $SOUNDS_ROOT -f $SYLLABLES_DATABASE_TAR tomwalters@54: touch $SOUNDS_ROOT/.untar_db_success tomwalters@54: fi tomwalters@54: tomwalters@54: # Convert the database to .WAV format and place it in $SOUNDS_ROOT/clean tomwalters@185: echo "Converting CNBH-syllables database from FLAC to WAV..." tomwalters@171: ./cnbh-syllables/feature_generation/convert_flac_to_wav.sh $SOUNDS_ROOT tomwalters@212: # tomwalters@212: ###### tomwalters@54: tomwalters@212: ##### tomwalters@212: # Step 002 - tomwalters@54: # Generate versions of the CNBH syllables spoke pattern with a range of tomwalters@54: # signal-to-noise ratios (SNRs). The versions are put in the directory tomwalters@54: # ${SOUNDS_ROOT}/${SNR}_dB/ for each SNR in $SNRS. tomwalters@243: SNRS="45"#" 42 39 36 33" #" 30 27 24 21 18 15 12 9 6 3 0" tomwalters@207: #SNRS="30" # For testing tomwalters@186: ./cnbh-syllables/feature_generation/pink_noise.sh $SOUNDS_ROOT/clean/ "$SNRS" tomwalters@54: tomwalters@54: # Make the list of all feature drectories tomwalters@243: #FEATURE_DIRS="clean" tomwalters@243: FEATURE_DIRS="" tomwalters@54: for SNR in $SNRS; do tomwalters@54: FEATURE_DIRS="$FEATURE_DIRS snr_${SNR}dB" tomwalters@54: done tomwalters@54: tomwalters@54: # Generate feature sets (for the full range of SNRs in $FEATURE_DIRS) tomwalters@54: # 1. Standard MFCC features tomwalters@54: # 2. AIM features tomwalters@212: # 3. MFCC features with optimal VTLN tomwalters@169: tomwalters@169: if [ ! -d $FEATURES_ROOT ]; then tomwalters@212: mkdir -p $FEATURES_ROOT tomwalters@169: fi tomwalters@169: tomwalters@212: if [ ! -e $HTK_ROOT/.htk_installed_success ]; then tomwalters@212: ./HTK/install_htk.sh $HTK_ROOT tomwalters@181: fi tomwalters@180: tomwalters@212: if [ ! -e $AIMC_ROOT/.aimc_build_success ]; then tomwalters@212: ./aimc/build_aimc.sh $AIMC_ROOT tomwalters@183: fi tomwalters@241: export PATH=$PATH:$AIMC_ROOT/build/posix-release/ tomwalters@183: tomwalters@54: for SOURCE_SNR in $FEATURE_DIRS; do tomwalters@177: if [ ! -e $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success ]; then tomwalters@54: mkdir -p $FEATURES_ROOT/mfcc/$SOURCE_SNR/ tomwalters@54: # Generate the list of files to convert tomwalters@189: ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ htk tomwalters@54: # Run the conversion tomwalters@212: ./cnbh-syllables/feature_generation/run_hcopy.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $NUMBER_OF_CORES tomwalters@212: touch $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success tomwalters@176: fi tomwalters@54: tomwalters@177: if [ ! -e $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success ]; then tomwalters@54: mkdir -p $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ tomwalters@54: # Generate the file list and run the conversion (all one step, since this tomwalters@186: # version uses a different configuration for each talker) tomwalters@212: ./cnbh-syllables/feature_generation/run_mfcc_vtln_conversion.sh $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ tomwalters@212: touch $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success tomwalters@176: fi tomwalters@54: tomwalters@177: if [ ! -e $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success ]; then tomwalters@212: mkdir -p $FEATURES_ROOT/aim/$SOURCE_SNR/ tomwalters@189: ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ "" tomwalters@54: # Run the conversion tomwalters@239: ./cnbh-syllables/feature_generation/run_aimcopy.sh $AIMCOPY_CONFIGURATION_FILE $FEATURES_ROOT/aim/$SOURCE_SNR/ $NUMBER_OF_CORES tomwalters@209: touch $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success tomwalters@176: fi tomwalters@212: done tomwalters@82: tomwalters@212: mkdir -p $HMMS_ROOT tomwalters@193: tomwalters@54: # Now run a bunch of experiments. tomwalters@54: # For each of the feature types, we want to run HMMs with a bunch of tomwalters@54: # parameters. tomwalters@212: TRAINING_ITERATIONS="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15" # 16 17 18 19 20" tomwalters@239: #TESTING_ITERATIONS="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15" #" 16 17 18 19 20" tomwalters@212: TESTING_ITERATIONS="15" tomwalters@212: #HMM_STATES="3 4 5 6 7 8" tomwalters@212: HMM_STATES="4" tomwalters@212: #HMM_OUTPUT_COMPONENTS="1 2 3 4 5 6 7" tomwalters@212: HMM_OUTPUT_COMPONENTS="4" tomwalters@202: tomwalters@204: run_train_test () { tomwalters@207: # TODO(tom): Make sure that the training SNR is generated first tomwalters@204: for SOURCE_SNR in $FEATURE_DIRS; do tomwalters@204: WORK=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/$SOURCE_SNR/$TALKERS/ tomwalters@204: mkdir -p $WORK tomwalters@204: FEATURES_DIR=$FEATURES_ROOT/$FEATURE_CLASS/$SOURCE_SNR/ tomwalters@215: SPOKE_PATTERN_FILE=`pwd`/cnbh-syllables/run_training_and_testing/train_test_sets/gen_spoke_points/spoke_pattern.txt tomwalters@204: tomwalters@204: ./cnbh-syllables/run_training_and_testing/train_test_sets/generate_train_test_lists.sh \ tomwalters@204: $TALKERS \ tomwalters@204: $WORK \ tomwalters@204: $FEATURES_DIR \ tomwalters@204: $FEATURE_SUFFIX tomwalters@204: tom@255: if [ $TRAINING_SNR == 'random' ]; then tom@255: TRAINING_SCRIPT=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/clean/$TALKERS/training_script tom@255: TRAINING_MASTER_LABEL_FILE=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/clean/$TALKERS/training_master_label_file tom@255: RANDOMIZED_TRAINING_SCRIPT=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/clean/$TALKERS/training_script_randomized tom@255: RANDOMIZED_TRAINING_MASTER_LABEL_FILE=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/clean/$TALKERS/training_master_label_file_randomized tom@255: ./cnbh-syllables/run_training_and_testing/train_test_sets/randomize_snrs.py -s clean -f $TRAINING_SCRIPT -m $TRAINING_MASTER_LABEL_FILE -o $RANDOMIZED_TRAINING_SCRIPT -p $RANDOMIZED_TRAINING_MASTER_LABEL_FILE tom@255: TRAINING_SCRIPT=$RANDOMIZED_TRAINING_SCRIPT tom@255: TRAINING_MASTER_LABEL_FILE=$RANDOMIZED_TRAINING_MASTER_LABEL_FILE tom@255: else tom@255: TRAINING_SCRIPT=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/$TRAINING_SNR/$TALKERS/training_script tom@255: TRAINING_MASTER_LABEL_FILE=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/$TRAINING_SNR/$TALKERS/training_master_label_file tom@255: fi tomwalters@207: tomwalters@204: TESTING_SCRIPT=$WORK/testing_script tomwalters@207: TESTING_MASTER_LABEL_FILE=$WORK/testing_master_label_file tomwalters@204: tomwalters@204: ./cnbh-syllables/run_training_and_testing/gen_htk_base_files.sh $WORK tomwalters@204: tomwalters@204: ./cnbh-syllables/run_training_and_testing/test_features.sh \ tomwalters@204: "$WORK" \ tomwalters@204: "$FEATURES_ROOT/$FEATURE_CLASS/$SOURCE_SNR/" \ tomwalters@204: "$FEATURE_SUFFIX" \ tomwalters@204: "$HMM_STATES" \ tomwalters@204: "$HMM_OUTPUT_COMPONENTS" \ tomwalters@204: "$TRAINING_ITERATIONS" \ tomwalters@204: "$TESTING_ITERATIONS" \ tomwalters@204: "$FEATURE_SIZE" \ tomwalters@204: "$FEATURE_TYPE" \ tomwalters@204: "$TRAINING_SCRIPT" \ tomwalters@204: "$TESTING_SCRIPT" \ tomwalters@206: "$TRAINING_MASTER_LABEL_FILE" \ tomwalters@215: "$TESTING_MASTER_LABEL_FILE" \ tomwalters@215: "$SPOKE_PATTERN_FILE" tomwalters@204: done tomwalters@204: } tomwalters@204: tomwalters@202: ######################## tomwalters@202: # Standard MFCCs tomwalters@186: FEATURE_CLASS=mfcc tomwalters@190: FEATURE_SUFFIX=htk tomwalters@186: FEATURE_SIZE=39 tomwalters@186: FEATURE_TYPE=MFCC_0_D_A tomwalters@202: TALKERS=inner_talkers tom@255: TRAINING_SNR=random tomwalters@202: run_train_test tomwalters@202: ######################## tomwalters@93: tomwalters@202: ######################## tomwalters@202: # Standard MFCCs tomwalters@202: # Train on extrema tomwalters@202: FEATURE_CLASS=mfcc tomwalters@202: FEATURE_SUFFIX=htk tomwalters@202: FEATURE_SIZE=39 tomwalters@202: FEATURE_TYPE=MFCC_0_D_A tomwalters@202: TALKERS=outer_talkers tomwalters@207: TRAINING_SNR=clean tom@255: #run_train_test tomwalters@202: ######################## tomwalters@202: tomwalters@202: ######################## tomwalters@202: # MFCCs with VTLN tomwalters@202: FEATURE_CLASS=mfcc_vtln tomwalters@202: FEATURE_SUFFIX=htk tomwalters@202: FEATURE_SIZE=39 tomwalters@202: FEATURE_TYPE=MFCC_0_D_A tomwalters@189: TALKERS=inner_talkers tom@255: TRAINING_SNR=random tomwalters@202: run_train_test tomwalters@202: ######################## tomwalters@202: tomwalters@202: ######################## tomwalters@202: # MFCCs with VTLN tomwalters@202: # Train on extrema tomwalters@202: FEATURE_CLASS=mfcc_vtln tomwalters@202: FEATURE_SUFFIX=htk tomwalters@202: FEATURE_SIZE=39 tomwalters@202: FEATURE_TYPE=MFCC_0_D_A tomwalters@202: TALKERS=outer_talkers tom@255: TRAINING_SNR=random tom@255: #run_train_test tomwalters@202: ######################## tomwalters@202: tomwalters@212: AIM_FEATURE_SUFFIXES="slice_1_no_cutoff ssi_profile_no_cutoff slice_1_cutoff ssi_profile_cutoff smooth_nap_profile" tomwalters@212: for f in $AIM_FEATURE_SUFFIXES tomwalters@212: do tomwalters@202: ######################## tomwalters@202: # AIM Features tomwalters@212: # Inner talkers tomwalters@212: FEATURE_CLASS=aim tomwalters@212: FEATURE_SUFFIX=$f tomwalters@212: FEATURE_SIZE=12 tomwalters@212: FEATURE_TYPE=USER_E_D_A tomwalters@212: TALKERS=inner_talkers tom@255: TRAINING_SNR=random tomwalters@212: run_train_test tomwalters@202: ######################## tomwalters@202: tomwalters@212: ######################## tomwalters@212: # AIM Features tomwalters@212: # Inner talkers tomwalters@212: FEATURE_CLASS=aim tomwalters@212: FEATURE_SUFFIX=$f tomwalters@212: FEATURE_SIZE=12 tomwalters@212: FEATURE_TYPE=USER_E_D_A tomwalters@212: TALKERS=outer_talkers tomwalters@212: TRAINING_SNR=clean tom@255: #run_train_test tomwalters@212: ######################## tomwalters@212: done tomwalters@202: tomwalters@189: tomwalters@187: tomwalters@192: