tomwalters@12: // Copyright 2010, Thomas Walters tomwalters@12: // tomwalters@12: // AIM-C: A C++ implementation of the Auditory Image Model tomwalters@12: // http://www.acousticscale.org/AIMC tomwalters@12: // tomwalters@12: // This program is free software: you can redistribute it and/or modify tomwalters@12: // it under the terms of the GNU General Public License as published by tomwalters@12: // the Free Software Foundation, either version 3 of the License, or tomwalters@12: // (at your option) any later version. tomwalters@12: // tomwalters@12: // This program is distributed in the hope that it will be useful, tomwalters@12: // but WITHOUT ANY WARRANTY; without even the implied warranty of tomwalters@12: // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the tomwalters@12: // GNU General Public License for more details. tomwalters@12: // tomwalters@12: // You should have received a copy of the GNU General Public License tomwalters@12: // along with this program. If not, see . tomwalters@12: tomwalters@12: /*! tomwalters@12: * \author Thomas Walters tomwalters@12: * \date created 2010/02/19 tomwalters@12: * \version \$Id$ tomwalters@12: */ tomwalters@12: tomwalters@15: #include tomwalters@15: tomwalters@12: #include "Modules/SSI/ModuleSSI.h" tomwalters@12: tomwalters@12: namespace aimc { tomwalters@12: ModuleSSI::ModuleSSI(Parameters *params) : Module(params) { tomwalters@12: module_description_ = "Size-shape image (aka the 'sscAI')"; tomwalters@12: module_identifier_ = "ssi"; tomwalters@12: module_type_ = "ssi"; tomwalters@12: module_version_ = "$Id$"; tomwalters@12: tomwalters@17: // do_pitch_cutoff_ = parameters_->DefaultBool("ssi.pitch_cutoff", false); tomwalters@15: ssi_width_cycles_ = parameters_->DefaultFloat("ssi.width_cycles", 20.0f); tomwalters@12: } tomwalters@12: tomwalters@12: ModuleSSI::~ModuleSSI() { tomwalters@12: } tomwalters@12: tomwalters@12: bool ModuleSSI::InitializeInternal(const SignalBank &input) { tomwalters@12: // Copy the parameters of the input signal bank into internal variables, so tomwalters@12: // that they can be checked later. tomwalters@12: sample_rate_ = input.sample_rate(); tomwalters@12: buffer_length_ = input.buffer_length(); tomwalters@12: channel_count_ = input.channel_count(); tomwalters@12: tomwalters@15: float lowest_cf = input.centre_frequency(0); tomwalters@15: ssi_width_samples_ = sample_rate_ * ssi_width_cycles_ / lowest_cf; tomwalters@15: if (ssi_width_samples_ > buffer_length_) { tomwalters@15: ssi_width_samples_ = buffer_length_; tomwalters@15: float cycles = ssi_width_samples_ * lowest_cf / sample_rate_; tomwalters@15: LOG_INFO(_T("Requested SSI width of %f cycles is too long for the " tomwalters@15: "input buffer length of %d samples. The SSI will be " tomwalters@15: "truncated at %d samples wide. This corresponds to a width " tomwalters@15: "of %f cycles."), ssi_width_cycles_, buffer_length_, tomwalters@15: ssi_width_samples_, cycles); tomwalters@15: ssi_width_cycles_ = cycles; tomwalters@15: } tomwalters@15: output_.Initialize(channel_count_, ssi_width_samples_, sample_rate_); tomwalters@12: return true; tomwalters@12: } tomwalters@12: tomwalters@12: void ModuleSSI::ResetInternal() { tomwalters@12: } tomwalters@12: tomwalters@12: void ModuleSSI::Process(const SignalBank &input) { tomwalters@12: // Check to see if the module has been initialized. If not, processing tomwalters@12: // should not continue. tomwalters@12: if (!initialized_) { tomwalters@13: LOG_ERROR(_T("Module %s not initialized."), module_identifier_.c_str()); tomwalters@12: return; tomwalters@12: } tomwalters@12: tomwalters@12: // Check that ths input this time is the same as the input passed to tomwalters@12: // Initialize() tomwalters@12: if (buffer_length_ != input.buffer_length() tomwalters@12: || channel_count_ != input.channel_count()) { tomwalters@12: LOG_ERROR(_T("Mismatch between input to Initialize() and input to " tomwalters@13: "Process() in module %s."), module_identifier_.c_str()); tomwalters@12: return; tomwalters@12: } tomwalters@12: tomwalters@15: output_.set_start_time(input.start_time()); tomwalters@12: tomwalters@15: for (int ch = 0; ch < channel_count_; ++ch) { tomwalters@15: // Copy the buffer from input to output, addressing by h-value tomwalters@15: for (int i = 0; i < ssi_width_samples_; ++i) { tomwalters@15: float h = static_cast(i) * ssi_width_cycles_ tomwalters@15: / static_cast(ssi_width_samples_); tomwalters@15: float cycle_samples = sample_rate_ / input.centre_frequency(ch); tomwalters@12: tomwalters@15: // The index into the input array is a floating-point number, which is tomwalters@15: // split into a whole part and a fractional part. The whole part and tomwalters@15: // fractional part are found, and are used to linearly interpolate tomwalters@15: // between input samples to yield an output sample. tomwalters@15: double whole_part; tomwalters@15: float frac_part = modf(h * cycle_samples, &whole_part); tomwalters@15: int sample = static_cast(whole_part); tomwalters@15: tomwalters@15: float val; tomwalters@15: if (sample < buffer_length_ - 1) { tomwalters@15: float curr_sample = input.sample(ch, sample); tomwalters@15: float next_sample = input.sample(ch, sample + 1); tomwalters@15: val = curr_sample + frac_part * (next_sample - curr_sample); tomwalters@15: } else { tomwalters@15: val = 0.0f; tomwalters@15: } tomwalters@15: output_.set_sample(ch, i, val); tomwalters@15: } tomwalters@15: } tomwalters@12: PushOutput(); tomwalters@12: } tomwalters@12: } // namespace aimc tomwalters@12: