tom@455: % Copyright 2012, Google, Inc. dicklyon@462: % Author Richard F. Lyon tom@455: % tom@455: % This Matlab file is part of an implementation of Lyon's cochlear model: tom@455: % "Cascade of Asymmetric Resonators with Fast-Acting Compression" tom@455: % to supplement Lyon's upcoming book "Human and Machine Hearing" tom@455: % tom@455: % Licensed under the Apache License, Version 2.0 (the "License"); tom@455: % you may not use this file except in compliance with the License. tom@455: % You may obtain a copy of the License at tom@455: % tom@455: % http://www.apache.org/licenses/LICENSE-2.0 tom@455: % tom@455: % Unless required by applicable law or agreed to in writing, software tom@455: % distributed under the License is distributed on an "AS IS" BASIS, tom@455: % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. tom@455: % See the License for the specific language governing permissions and tom@455: % limitations under the License. tom@455: dicklyon@473: function [CF, decim_naps, naps] = CARFAC_Run ... tom@455: (CF, input_waves, AGC_plot_fig_num) dicklyon@473: % function [CF, decim_naps, naps] = CARFAC_Run ... dicklyon@462: % (CF, input_waves, AGC_plot_fig_num) tom@455: % This function runs the CARFAC; that is, filters a 1 or more channel tom@455: % sound input to make one or more neural activity patterns (naps). tom@455: % tom@455: % The CF struct holds the filterbank design and state; if you want to tom@455: % break the input up into segments, you need to use the updated CF tom@455: % to keep the state between segments. tom@455: % tom@455: % input_waves is a column vector if there's just one audio channel; tom@455: % more generally, it has a row per time sample, a column per audio channel. tom@455: % tom@455: % naps has a row per time sample, a column per filterbank channel, and tom@455: % a layer per audio channel if more than 1. tom@455: % decim_naps is like naps but time-decimated by the int CF.decimation. tom@455: % tom@455: % the input_waves are assumed to be sampled at the same rate as the tom@455: % CARFAC is designed for; a resampling may be needed before calling this. tom@455: % tom@455: % The function works as an outer iteration on time, updating all the tom@455: % filters and AGC states concurrently, so that the different channels can tom@455: % interact easily. The inner loops are over filterbank channels, and tom@455: % this level should be kept efficient. tom@455: dicklyon@473: [n_samp, n_ears] = size(input_waves); tom@455: n_ch = CF.n_ch; tom@455: tom@455: if nargin < 3 tom@455: AGC_plot_fig_num = 0; tom@455: end tom@455: dicklyon@473: if n_ears ~= CF.n_ears tom@455: error('bad number of input_waves channels passed to CARFAC_Run') tom@455: end tom@455: dicklyon@473: dicklyon@473: naps = zeros(n_samp, n_ch, n_ears); dicklyon@473: dicklyon@473: seglen = 16; dicklyon@473: n_segs = ceil(n_samp / seglen); dicklyon@473: dicklyon@473: if nargout > 1 tom@455: % make decimated detect output: dicklyon@473: decim_naps = zeros(n_segs, CF.n_ch, CF.n_ears); tom@455: else tom@455: decim_naps = []; tom@455: end tom@455: dicklyon@473: if nargout > 2 dicklyon@473: % make decimated detect output: dicklyon@473: naps = zeros(n_samp, CF.n_ch, CF.n_ears); dicklyon@473: else dicklyon@473: naps = []; dicklyon@473: end tom@455: dicklyon@473: for seg_num = 1:n_segs dicklyon@473: if seg_num == n_segs dicklyon@473: % The last segement may be short of seglen, but do it anyway: dicklyon@473: k_range = (seglen*(seg_num - 1) + 1):n_samp; dicklyon@473: else dicklyon@473: k_range = seglen*(seg_num - 1) + (1:seglen); tom@455: end dicklyon@473: % Process a segment to get a slice of decim_naps, and plot AGC state: dicklyon@473: [seg_naps, CF] = CARFAC_Run_Segment(CF, input_waves(k_range, :)); dicklyon@473: dicklyon@473: if ~isempty(naps) dicklyon@473: for ear = 1:n_ears dicklyon@473: % Accumulate segment naps to make full naps dicklyon@473: naps(k_range, :, ear) = seg_naps(:, :, ear); tom@455: end dicklyon@462: end dicklyon@462: dicklyon@473: if ~isempty(decim_naps) dicklyon@473: for ear = 1:n_ears dicklyon@473: decim_naps(seg_num, :, ear) = CF.IHC_state(ear).ihc_accum / seglen; dicklyon@473: CF.IHC_state(ear).ihc_accum = zeros(n_ch,1); dicklyon@473: end tom@455: end dicklyon@462: dicklyon@473: if AGC_plot_fig_num dicklyon@462: figure(AGC_plot_fig_num); hold off; clf dicklyon@462: set(gca, 'Position', [.25, .25, .5, .5]) dicklyon@462: dicklyon@473: for ear = 1:n_ears dicklyon@473: plot(CF.AGC_state(ear).AGC_memory(:, 1), 'k-', 'LineWidth', 1) dicklyon@473: maxes(ear) = max(CF.AGC_state(ear).AGC_memory(:)); dicklyon@462: hold on dicklyon@462: for stage = 1:3; dicklyon@473: plot(2^(stage-1) * (CF.AGC_state(ear).AGC_memory(:, stage) - ... dicklyon@473: 2 * CF.AGC_state(ear).AGC_memory(:, stage+1))); dicklyon@462: end dicklyon@462: stage = 4; dicklyon@473: plot(2^(stage-1) * CF.AGC_state(ear).AGC_memory(:, stage)); dicklyon@462: end dicklyon@473: axis([0, CF.n_ch+1, 0.0, max(maxes) + 0.01]); dicklyon@462: drawnow dicklyon@462: end dicklyon@473: tom@455: end tom@455: dicklyon@473: dicklyon@473: