alexbrandmeyer@609: // alexbrandmeyer@609: // ear.cc alexbrandmeyer@609: // CARFAC Open Source C++ Library alexbrandmeyer@609: // alexbrandmeyer@609: // Created by Alex Brandmeyer on 5/10/13. alexbrandmeyer@609: // alexbrandmeyer@609: // This C++ file is part of an implementation of Lyon's cochlear model: alexbrandmeyer@609: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" alexbrandmeyer@609: // to supplement Lyon's upcoming book "Human and Machine Hearing" alexbrandmeyer@609: // alexbrandmeyer@609: // Licensed under the Apache License, Version 2.0 (the "License"); alexbrandmeyer@609: // you may not use this file except in compliance with the License. alexbrandmeyer@609: // You may obtain a copy of the License at alexbrandmeyer@609: // alexbrandmeyer@609: // http://www.apache.org/licenses/LICENSE-2.0 alexbrandmeyer@609: // alexbrandmeyer@609: // Unless required by applicable law or agreed to in writing, software alexbrandmeyer@609: // distributed under the License is distributed on an "AS IS" BASIS, alexbrandmeyer@609: // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. alexbrandmeyer@609: // See the License for the specific language governing permissions and alexbrandmeyer@609: // limitations under the License. alexbrandmeyer@609: alexbrandmeyer@609: #include "ear.h" alexbrandmeyer@609: alexbrandmeyer@609: void Ear::InitEar(long fs, CARParams car_p, IHCParams ihc_p, AGCParams agc_p){ alexbrandmeyer@609: car_params_ = car_p; alexbrandmeyer@609: ihc_params_ = ihc_p; alexbrandmeyer@609: agc_params_ = agc_p; alexbrandmeyer@609: n_ch_ = 0; alexbrandmeyer@609: FPType pole_hz = car_params_.first_pole_theta_ * fs / (2 * PI); alexbrandmeyer@609: while (pole_hz > car_params_.min_pole_hz_) { alexbrandmeyer@609: n_ch_++; alexbrandmeyer@609: pole_hz = pole_hz - car_params_.erb_per_step_ * alexbrandmeyer@609: ERBHz(pole_hz, car_params_.erb_break_freq_, car_params_.erb_q_); alexbrandmeyer@609: } alexbrandmeyer@609: FloatArray pole_freqs(n_ch_); alexbrandmeyer@609: pole_hz = car_params_.first_pole_theta_ * fs / (2 * PI); alexbrandmeyer@609: for(int ch=0;ch < n_ch_; ch++){ alexbrandmeyer@609: pole_freqs(ch) = pole_hz; alexbrandmeyer@609: pole_hz = pole_hz - car_params_.erb_per_step_ * alexbrandmeyer@609: ERBHz(pole_hz, car_params_.erb_break_freq_, car_params_.erb_q_); alexbrandmeyer@609: } alexbrandmeyer@609: max_channels_per_octave_ = log(2) / log(pole_freqs(0) / pole_freqs(1)); alexbrandmeyer@609: car_coeffs_.DesignFilters(car_params_, fs, &pole_freqs); alexbrandmeyer@609: agc_coeffs_.DesignAGC(agc_params_, fs, n_ch_); alexbrandmeyer@609: ihc_coeffs_.DesignIHC(ihc_params_, fs, n_ch_); alexbrandmeyer@609: car_state_.InitCARState(car_coeffs_); alexbrandmeyer@609: agc_state_.InitAGCState(agc_coeffs_); alexbrandmeyer@609: ihc_state_.InitIHCState(ihc_coeffs_); alexbrandmeyer@609: alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: FloatArray Ear::CARStep(FPType input){ alexbrandmeyer@609: FloatArray g(n_ch_); alexbrandmeyer@609: FloatArray zb(n_ch_); alexbrandmeyer@609: FloatArray za(n_ch_); alexbrandmeyer@609: FloatArray v(n_ch_); alexbrandmeyer@609: FloatArray nlf(n_ch_); alexbrandmeyer@609: FloatArray r(n_ch_); alexbrandmeyer@609: FloatArray z1(n_ch_); alexbrandmeyer@609: FloatArray z2(n_ch_); alexbrandmeyer@609: FloatArray zy(n_ch_); alexbrandmeyer@609: FPType in_out; alexbrandmeyer@609: alexbrandmeyer@609: // do the DOHC stuff: alexbrandmeyer@609: g = car_state_.g_memory_ + car_state_.dg_memory_; //interp g alexbrandmeyer@609: zb = car_state_.zb_memory_ + car_state_.dzb_memory_; //AGC interpolation state alexbrandmeyer@609: // update the nonlinear function of "velocity", and zA (delay of z2): alexbrandmeyer@609: za = car_state_.za_memory_; alexbrandmeyer@609: v = car_state_.z2_memory_ - za; alexbrandmeyer@609: nlf = OHC_NLF(v); alexbrandmeyer@609: r = car_coeffs_.r1_coeffs_ + (zb * nlf); // zB * nfl is "undamping" delta r alexbrandmeyer@609: za = car_state_.z2_memory_; alexbrandmeyer@609: // now reduce state by r and rotate with the fixed cos/sin coeffs: alexbrandmeyer@609: z1 = r * ((car_coeffs_.a0_coeffs_ * car_state_.z1_memory_) - alexbrandmeyer@609: (car_coeffs_.c0_coeffs_ * car_state_.z2_memory_)); alexbrandmeyer@609: z2 = r * ((car_coeffs_.c0_coeffs_ * car_state_.z1_memory_) + alexbrandmeyer@609: (car_coeffs_.a0_coeffs_ * car_state_.z2_memory_)); alexbrandmeyer@609: zy = car_coeffs_.h_coeffs_ * z2; alexbrandmeyer@609: // Ripple input-output path, instead of parallel, to avoid delay... alexbrandmeyer@609: // this is the only part that doesn't get computed "in parallel": alexbrandmeyer@609: in_out = input; alexbrandmeyer@609: for (int ch = 0; ch < n_ch_; ch++){ alexbrandmeyer@609: z1(ch) = z1(ch) + in_out; alexbrandmeyer@609: // ripple, saving final channel outputs in zY alexbrandmeyer@609: in_out = g(ch) * (in_out + zy(ch)); alexbrandmeyer@609: zy(ch) = in_out; alexbrandmeyer@609: } alexbrandmeyer@609: car_state_.z1_memory_ = z1; alexbrandmeyer@609: car_state_.z2_memory_ = z2; alexbrandmeyer@609: car_state_.za_memory_ = za; alexbrandmeyer@609: car_state_.zb_memory_ = zb; alexbrandmeyer@609: car_state_.zy_memory_ = zy; alexbrandmeyer@609: car_state_.g_memory_ = g; alexbrandmeyer@609: // car_out is equal to zy state; alexbrandmeyer@609: return zy; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: // start with a quadratic nonlinear function, and limit it via a alexbrandmeyer@609: // rational function; make the result go to zero at high alexbrandmeyer@609: // absolute velocities, so it will do nothing there. alexbrandmeyer@609: FloatArray Ear::OHC_NLF(FloatArray velocities){ alexbrandmeyer@609: FloatArray nlf(n_ch_); alexbrandmeyer@609: nlf = 1 / ((velocities * car_coeffs_.velocity_scale_) + alexbrandmeyer@609: (car_coeffs_.v_offset_ * car_coeffs_.v_offset_)); alexbrandmeyer@609: return nlf; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: // One sample-time update of inner-hair-cell (IHC) model, including the alexbrandmeyer@609: // detection nonlinearity and one or two capacitor state variables. alexbrandmeyer@609: FloatArray Ear::IHCStep(FloatArray car_out){ alexbrandmeyer@609: FloatArray ihc_out(n_ch_); alexbrandmeyer@609: FloatArray ac_diff(n_ch_); alexbrandmeyer@609: FloatArray conductance(n_ch_); alexbrandmeyer@609: ac_diff = car_out - ihc_state_.ac_coupler_; alexbrandmeyer@609: ihc_state_.ac_coupler_ = ihc_state_.ac_coupler_ + alexbrandmeyer@609: (ihc_coeffs_.ac_coeff_ * ac_diff); alexbrandmeyer@609: if (ihc_coeffs_.just_hwr_) { alexbrandmeyer@609: //TODO Figure out best implementation with Eigen max/min methods alexbrandmeyer@609: for (int ch = 0; ch < n_ch_; ch++){ alexbrandmeyer@609: FPType a; alexbrandmeyer@609: if (ac_diff(ch) > 0){ alexbrandmeyer@609: a = ac_diff(ch); alexbrandmeyer@609: } else { alexbrandmeyer@609: a = 0; alexbrandmeyer@609: } alexbrandmeyer@609: if (a < 2){ alexbrandmeyer@609: ihc_out(ch) = a; alexbrandmeyer@609: } else { alexbrandmeyer@609: ihc_out(ch) = 2; alexbrandmeyer@609: } alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: } else { alexbrandmeyer@609: conductance = CARFACDetect(ac_diff); alexbrandmeyer@609: if (ihc_coeffs_.one_cap_) { alexbrandmeyer@609: ihc_out = conductance * ihc_state_.cap1_voltage_; alexbrandmeyer@609: ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - alexbrandmeyer@609: (ihc_out * ihc_coeffs_.out1_rate_) + alexbrandmeyer@609: ((1 - ihc_state_.cap1_voltage_) alexbrandmeyer@609: * ihc_coeffs_.in1_rate_); alexbrandmeyer@609: } else { alexbrandmeyer@609: ihc_out = conductance * ihc_state_.cap2_voltage_; alexbrandmeyer@609: ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - alexbrandmeyer@609: ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) alexbrandmeyer@609: * ihc_coeffs_.out1_rate_) + alexbrandmeyer@609: ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_); alexbrandmeyer@609: ihc_state_.cap2_voltage_ = ihc_state_.cap2_voltage_ - alexbrandmeyer@609: (ihc_out * ihc_coeffs_.out2_rate_) + alexbrandmeyer@609: ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) alexbrandmeyer@609: * ihc_coeffs_.in2_rate_); alexbrandmeyer@609: } alexbrandmeyer@609: // smooth it twice with LPF: alexbrandmeyer@609: ihc_out = ihc_out * ihc_coeffs_.output_gain_; alexbrandmeyer@609: ihc_state_.lpf1_state_ = ihc_state_.lpf1_state_ + alexbrandmeyer@609: (ihc_coeffs_.lpf_coeff_ * (ihc_out - ihc_state_.lpf1_state_)); alexbrandmeyer@609: ihc_state_.lpf2_state_ = ihc_state_.lpf2_state_ + alexbrandmeyer@609: (ihc_coeffs_.lpf_coeff_ * alexbrandmeyer@609: (ihc_state_.lpf1_state_ - ihc_state_.lpf2_state_)); alexbrandmeyer@609: ihc_out = ihc_state_.lpf2_state_ - ihc_coeffs_.rest_output_; alexbrandmeyer@609: } alexbrandmeyer@609: ihc_state_.ihc_accum_ += ihc_out; alexbrandmeyer@609: return ihc_out; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: bool Ear::AGCStep(FloatArray ihc_out){ alexbrandmeyer@609: int stage = 0; alexbrandmeyer@609: FloatArray agc_in(n_ch_); alexbrandmeyer@609: agc_in = agc_coeffs_.detect_scale_ * ihc_out; alexbrandmeyer@609: bool updated = AGCRecurse(stage, agc_in); alexbrandmeyer@609: return updated; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: bool Ear::AGCRecurse(int stage, FloatArray agc_in){ alexbrandmeyer@609: bool updated = true; alexbrandmeyer@609: // decim factor for this stage, relative to input or prev. stage: alexbrandmeyer@609: int decim = agc_coeffs_.decimation_(stage); alexbrandmeyer@609: // decim phase of this stage (do work on phase 0 only): alexbrandmeyer@609: //TODO FIX MODULO alexbrandmeyer@609: alexbrandmeyer@609: int decim_phase = agc_state_.decim_phase_(stage); alexbrandmeyer@609: decim_phase = decim_phase % decim; alexbrandmeyer@609: agc_state_.decim_phase_(stage) = decim_phase; alexbrandmeyer@609: // accumulate input for this stage from detect or previous stage: alexbrandmeyer@609: agc_state_.input_accum_.block(0,stage,n_ch_,1) = alexbrandmeyer@609: agc_state_.input_accum_.block(0,stage,n_ch_,1) + agc_in; alexbrandmeyer@609: alexbrandmeyer@609: // nothing else to do if it's not the right decim_phase alexbrandmeyer@609: if (decim_phase == 0){ alexbrandmeyer@609: // do lots of work, at decimated rate. alexbrandmeyer@609: // decimated inputs for this stage, and to be decimated more for next: alexbrandmeyer@609: agc_in = agc_state_.input_accum_.block(0,stage,n_ch_,1) / decim; alexbrandmeyer@609: // reset accumulator: alexbrandmeyer@609: agc_state_.input_accum_.block(0,stage,n_ch_,1) = FloatArray::Zero(n_ch_); alexbrandmeyer@609: alexbrandmeyer@609: if (stage < (agc_coeffs_.decimation_.size() - 1)){ alexbrandmeyer@609: // recurse to evaluate next stage(s) alexbrandmeyer@609: updated = AGCRecurse(stage+1, agc_in); alexbrandmeyer@609: // and add its output to this stage input, whether it updated or not: alexbrandmeyer@609: agc_in = agc_in + (agc_coeffs_.agc_stage_gain_ * alexbrandmeyer@609: agc_state_.agc_memory_.block(0,stage+1,n_ch_,1)); alexbrandmeyer@609: } alexbrandmeyer@609: FloatArray agc_stage_state = agc_state_.agc_memory_.block(0,stage,n_ch_,1); alexbrandmeyer@609: // first-order recursive smoothing filter update, in time: alexbrandmeyer@609: agc_stage_state = agc_stage_state + (agc_coeffs_.agc_epsilon_(stage) * alexbrandmeyer@609: (agc_in - agc_stage_state)); alexbrandmeyer@609: agc_stage_state = AGCSpatialSmooth(stage, agc_stage_state); alexbrandmeyer@609: agc_state_.agc_memory_.block(0,stage,n_ch_,1) = agc_stage_state; alexbrandmeyer@609: } else { alexbrandmeyer@609: updated = false; alexbrandmeyer@609: } alexbrandmeyer@609: return updated; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: FloatArray Ear::AGCSpatialSmooth(int stage, FloatArray stage_state){ alexbrandmeyer@609: int n_iterations = agc_coeffs_.agc_spatial_iterations_(stage); alexbrandmeyer@609: bool use_fir; alexbrandmeyer@609: if (n_iterations < 4){ alexbrandmeyer@609: use_fir = true; alexbrandmeyer@609: } else { alexbrandmeyer@609: use_fir = false; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: if (use_fir) { alexbrandmeyer@609: FloatArray fir_coeffs = agc_coeffs_.agc_spatial_fir_.block(0,stage,3,1); alexbrandmeyer@609: FloatArray ss_tap1(n_ch_); alexbrandmeyer@609: FloatArray ss_tap2(n_ch_); alexbrandmeyer@609: FloatArray ss_tap3(n_ch_); alexbrandmeyer@609: FloatArray ss_tap4(n_ch_); alexbrandmeyer@609: int n_taps = agc_coeffs_.agc_spatial_n_taps_(stage); alexbrandmeyer@609: //Initialize first two taps of stage state, used for both cases alexbrandmeyer@609: ss_tap1(0) = stage_state(0); alexbrandmeyer@609: ss_tap1.block(1,0,n_ch_-1,1) = stage_state.block(0,0,n_ch_-1,1); alexbrandmeyer@609: ss_tap2(n_ch_-1) = stage_state(n_ch_-1); alexbrandmeyer@609: ss_tap2.block(0,0,n_ch_-1,1) = stage_state.block(1,0,n_ch_-1,1); alexbrandmeyer@609: switch (n_taps) { alexbrandmeyer@609: case 3: alexbrandmeyer@609: stage_state = (fir_coeffs(0) * ss_tap1) + alexbrandmeyer@609: (fir_coeffs(1) * stage_state) + alexbrandmeyer@609: (fir_coeffs(2) * ss_tap2); alexbrandmeyer@609: break; alexbrandmeyer@609: case 5: alexbrandmeyer@609: //Initialize last two taps of stage state, used for 5-tap case alexbrandmeyer@609: ss_tap3(0) = stage_state(0); alexbrandmeyer@609: ss_tap3(1) = stage_state(1); alexbrandmeyer@609: ss_tap3.block(2,0,n_ch_-2,1) = stage_state.block(0,0,n_ch_-2,1); alexbrandmeyer@609: ss_tap4(n_ch_-2) = stage_state(n_ch_-1); alexbrandmeyer@609: ss_tap4(n_ch_-1) = stage_state(n_ch_-2); alexbrandmeyer@609: ss_tap4.block(0,0,n_ch_-2,1) = stage_state.block(2,0,n_ch_-2,1); alexbrandmeyer@609: alexbrandmeyer@609: stage_state = (fir_coeffs(0) * (ss_tap3 + ss_tap1)) + alexbrandmeyer@609: (fir_coeffs(1) * stage_state) + alexbrandmeyer@609: (fir_coeffs(2) * (ss_tap2 + ss_tap4)); alexbrandmeyer@609: break; alexbrandmeyer@609: default: alexbrandmeyer@609: //TODO Throw Error alexbrandmeyer@609: std::cout << "Error: bad n-taps in AGCSpatialSmooth" << std::endl; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: } else { alexbrandmeyer@609: stage_state = AGCSmoothDoubleExponential(stage_state); alexbrandmeyer@609: } alexbrandmeyer@609: return stage_state; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@609: FloatArray Ear::AGCSmoothDoubleExponential(FloatArray stage_state){ alexbrandmeyer@609: return stage_state; alexbrandmeyer@609: }