tomwalters@276: // Copyright 2009-2010, Thomas Walters tomwalters@276: // tomwalters@276: // AIM-C: A C++ implementation of the Auditory Image Model tomwalters@276: // http://www.acousticscale.org/AIMC tomwalters@276: // tomwalters@276: // This program is free software: you can redistribute it and/or modify tomwalters@276: // it under the terms of the GNU General Public License as published by tomwalters@276: // the Free Software Foundation, either version 3 of the License, or tomwalters@276: // (at your option) any later version. tomwalters@276: // tomwalters@276: // This program is distributed in the hope that it will be useful, tomwalters@276: // but WITHOUT ANY WARRANTY; without even the implied warranty of tomwalters@276: // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the tomwalters@276: // GNU General Public License for more details. tomwalters@276: // tomwalters@276: // You should have received a copy of the GNU General Public License tomwalters@276: // along with this program. If not, see . tomwalters@276: tomwalters@276: /*! \file tomwalters@276: * \brief Slaney's gammatone filterbank tomwalters@276: * tomwalters@276: * \author Thomas Walters tomwalters@276: * \date created 2009/11/13 tomwalters@276: * \version \$Id$ tomwalters@276: */ tomwalters@276: tomwalters@276: #include tomwalters@276: tomwalters@276: #include "Modules/BMM/ModuleGammatone.h" tomwalters@276: tomwalters@276: namespace aimc { tomwalters@276: using std::complex; tomwalters@276: ModuleGammatone::ModuleGammatone(Parameters *params) : Module(params) { tomwalters@276: module_identifier_ = "gtfb"; tomwalters@276: module_type_ = "bmm"; tomwalters@276: module_description_ = "Gammatone filterbank (Slaney's IIR gammatone)"; tomwalters@276: module_version_ = "$Id$"; tomwalters@276: tomwalters@276: num_channels_ = parameters_->DefaultInt("gtfb.channel_count", 200); tomwalters@276: min_frequency_ = parameters_->DefaultFloat("gtfb.min_frequency", 86.0f); tomwalters@276: max_frequency_ = parameters_->DefaultFloat("gtfb.max_frequency", 16000.0f); tomwalters@276: } tomwalters@276: tomwalters@276: bool ModuleGammatone::InitializeInternal(const SignalBank& input) { tomwalters@276: // Calculate number of channels, and centre frequencies tomwalters@276: tomwalters@276: forward_.resize(num_channels_); tomwalters@276: feedback_.resize(num_channels_); tomwalters@276: tomwalters@276: for (int ch = 0; ch < num_channels_; ++ch) { tomwalters@276: float erb = Freq2ERBw(cf) tomwalters@276: tomwalters@276: // Sample interval tomwalters@276: float dt = 1.0f / fs; tomwalters@276: tomwalters@276: // Bandwidth parameter tomwalters@276: float b = 1.019f * 2.0f * M_PI * erb; tomwalters@276: tomwalters@276: // All of the following expressions are derived in Apple TR #35, "An tomwalters@276: // Efficient Implementation of the Patterson-Holdsworth Cochlear tomwalters@276: // Filter Bank". tomwalters@276: tomwalters@276: // Calculate the gain: tomwalters@276: complex exponent(0.0f, 2.0f * cf * M_PI * T); tomwalters@276: complex ec = exp(2.0f * complex_exponent); tomwalters@276: complex two_cf_pi_t(2.0f * cf * M_PI * T, 0.0f); tomwalters@276: complex two_pow(pow(2.0f, (3.0f/2.0f)), 0.0f); tomwalters@276: tomwalters@276: complex p = -2.0f * ec * T + 2.0f * exp(-(B * T) + exponent) * dt; tomwalters@276: tomwalters@276: float gain = abs( tomwalters@276: (part1 * (cos(two_cf_pi_t) - sqrt(3.0f - twopow) * sin(two_cf_pi_t))) tomwalters@276: * (part1 * (cos(two_cf_pi_t) + sqrt(3.0f - twopow) * sin(two_cf_pi_t))) tomwalters@276: * (part1 * (cos(two_cf_pi_t) - sqrt(3.0f + twopow) * sin(two_cf_pi_t))) tomwalters@276: * (part1 * (cos(two_cf_pi_t) + sqrt(3.0f + twopow) * sin(two_cf_pi_t))) tomwalters@276: / pow(-2.0f / exp(2.0f * b * dt) - 2.0f * ec + 2.0f * (1.0f + ec) tomwalters@276: / exp(b * dt), 4.0f)); tomwalters@276: tomwalters@276: // The filter coefficients themselves: tomwalters@276: forward[ch].resize(5, 0.0f); tomwalters@276: feedback[ch].resize(9, 0.0f); tomwalters@276: tomwalters@276: forward[ch][0] = pow(T, 4.0f) / gain; tomwalters@276: forward[ch][1] = (-4.0f * pow(T, 4.0f) * cos(2.0f * cf * M_PI * dt) tomwalters@276: / exp(b * dt) / gain); tomwalters@276: forward[ch][2] = (6.0f * pow(T, 4.0f) * cos(4.0f * cf * M_PI * dt) tomwalters@276: / exp(2.0f * b * dt) / gain); tomwalters@276: forward[ch][3] = (-4.0f * pow(T, 4.0f) * cos(6.0f * cf * M_PI * dt) tomwalters@276: / exp(3.0f * b * dt) / gain); tomwalters@276: forward[ch][4] = (pow(T,4.0f) * cos(8.0f * cf * M_PI * dt) tomwalters@276: / exp(4.0f * b * dt) / gain); tomwalters@276: tomwalters@276: feedback[ch][0] = 1.0f; tomwalters@276: feedback[ch][1] = -8.0f * cos(2.0f * cf * M_PI * T) / exp(b * dt); tomwalters@276: feedback[ch][2] = (4.0f * (4.0f + 3.0f * cos(4.0f * cf * M_PI * dt)) tomwalters@276: / exp(2.0f * b * dt)); tomwalters@276: feedback[ch][3] = (-8.0f * (6.0f * cos(2.0f * cf * M_PI * dt) tomwalters@276: + cos(6.0f * cf * M_PI * dt)) tomwalters@276: / exp(3.0f * b * dt)); tomwalters@276: feedback[ch][4] = (2.0f * (18.0f + 16.0f * cos(4.0f * cf * M_PI * dt) tomwalters@276: + cos(8.0f * cf * M_PI * dt)) tomwalters@276: / exp(4.0f * b * dt)); tomwalters@276: feedback[ch][5] = (-8.0f * (6.0f * cos(2.0f * cf * M_PI * T) tomwalters@276: + cos(6.0f * cf * M_PI * T)) tomwalters@276: / exp(5.0f * B * T)); tomwalters@276: feedback[ch][6] = (4.0f * (4.0f + 3.0f * cos(4.0f * cf * M_PI * T)) tomwalters@276: / exp(6.0f * B * T)); tomwalters@276: feedback[ch][7] = -8.0f * cos(2.0f * cf * M_PI * dt) / exp(7.0f * b * dt); tomwalters@276: feedback[ch][8] = exp(-8.0f * b * dt); tomwalters@276: } tomwalters@276: } tomwalters@276: } // namespace aimc