tomwalters@12: // Copyright 2010, Thomas Walters tomwalters@12: // tomwalters@12: // AIM-C: A C++ implementation of the Auditory Image Model tomwalters@12: // http://www.acousticscale.org/AIMC tomwalters@12: // tomwalters@45: // Licensed under the Apache License, Version 2.0 (the "License"); tomwalters@45: // you may not use this file except in compliance with the License. tomwalters@45: // You may obtain a copy of the License at tomwalters@12: // tomwalters@45: // http://www.apache.org/licenses/LICENSE-2.0 tomwalters@12: // tomwalters@45: // Unless required by applicable law or agreed to in writing, software tomwalters@45: // distributed under the License is distributed on an "AS IS" BASIS, tomwalters@45: // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. tomwalters@45: // See the License for the specific language governing permissions and tomwalters@45: // limitations under the License. tomwalters@12: tomwalters@12: /*! tomwalters@12: * \author Thomas Walters tomwalters@12: * \date created 2010/02/19 tomwalters@12: * \version \$Id$ tomwalters@12: */ tomwalters@12: tomwalters@15: #include tomwalters@15: tomwalters@12: #include "Modules/SSI/ModuleSSI.h" tomwalters@12: tomwalters@12: namespace aimc { tomwalters@52: #ifdef _MSC_VER tomwalters@52: // MSVC doesn't define log2() tomwalters@52: float log2(float n) { tomwalters@52: return log(n) / log(2.0); tomwalters@52: } tomwalters@52: #endif tomwalters@52: tomwalters@12: ModuleSSI::ModuleSSI(Parameters *params) : Module(params) { tomwalters@12: module_description_ = "Size-shape image (aka the 'sscAI')"; tomwalters@12: module_identifier_ = "ssi"; tomwalters@12: module_type_ = "ssi"; tomwalters@12: module_version_ = "$Id$"; tomwalters@12: tomwalters@32: // Cut off the SSI at the end of the first cycle tomwalters@32: do_pitch_cutoff_ = parameters_->DefaultBool("ssi.pitch_cutoff", false); tomwalters@32: tomwalters@32: // Weight the values in each channel more strongly if the channel was tomwalters@32: // truncated due to the pitch cutoff. This ensures that the same amount of tomwalters@32: // energy remains in the SSI spectral profile tomwalters@32: weight_by_cutoff_ = parameters_->DefaultBool("ssi.weight_by_cutoff", false); tomwalters@32: tomwalters@32: // Weight the values in each channel more strongly if the channel was tomwalters@32: // scaled such that the end goes off the edge of the computed SSI. tomwalters@32: // Again, this ensures that the overall energy of the spectral profile tomwalters@32: // remains the same. tomwalters@32: weight_by_scaling_ = parameters_->DefaultBool("ssi.weight_by_scaling", tomwalters@32: false); tomwalters@32: tomwalters@32: // Time from the zero-lag line of the SAI from which to start searching tomwalters@32: // for a maximum in the input SAI's temporal profile. tomwalters@32: pitch_search_start_ms_ = parameters_->DefaultFloat( tomwalters@32: "ssi.pitch_search_start_ms", 2.0f); tomwalters@32: tomwalters@32: // Total width in cycles of the whole SSI tomwalters@32: ssi_width_cycles_ = parameters_->DefaultFloat("ssi.width_cycles", 10.0f); tomwalters@32: tomwalters@32: // Set to true to make the cycles axis logarithmic (ie indexing by gamma tomwalters@32: // rather than by cycles) tomwalters@32: log_cycles_axis_ = parameters_->DefaultBool("ssi.log_cycles_axis", true); tomwalters@32: tomwalters@32: // The centre frequency of the channel which will just fill the complete tomwalters@32: // width of the SSI buffer tomwalters@32: pivot_cf_ = parameters_->DefaultFloat("ssi.pivot_cf", 1000.0f); tomwalters@12: } tomwalters@12: tomwalters@12: ModuleSSI::~ModuleSSI() { tomwalters@12: } tomwalters@12: tomwalters@12: bool ModuleSSI::InitializeInternal(const SignalBank &input) { tomwalters@12: // Copy the parameters of the input signal bank into internal variables, so tomwalters@12: // that they can be checked later. tomwalters@12: sample_rate_ = input.sample_rate(); tomwalters@12: buffer_length_ = input.buffer_length(); tomwalters@12: channel_count_ = input.channel_count(); tomwalters@12: tomwalters@32: ssi_width_samples_ = sample_rate_ * ssi_width_cycles_ / pivot_cf_; tomwalters@15: if (ssi_width_samples_ > buffer_length_) { tomwalters@15: ssi_width_samples_ = buffer_length_; tomwalters@32: float cycles = ssi_width_samples_ * pivot_cf_ / sample_rate_; tomwalters@15: LOG_INFO(_T("Requested SSI width of %f cycles is too long for the " tomwalters@15: "input buffer length of %d samples. The SSI will be " tomwalters@15: "truncated at %d samples wide. This corresponds to a width " tomwalters@15: "of %f cycles."), ssi_width_cycles_, buffer_length_, tomwalters@15: ssi_width_samples_, cycles); tomwalters@15: ssi_width_cycles_ = cycles; tomwalters@15: } tomwalters@15: output_.Initialize(channel_count_, ssi_width_samples_, sample_rate_); tomwalters@12: return true; tomwalters@12: } tomwalters@12: tomwalters@12: void ModuleSSI::ResetInternal() { tomwalters@12: } tomwalters@12: tomwalters@32: int ModuleSSI::ExtractPitchIndex(const SignalBank &input) const { tomwalters@32: // Generate temporal profile of the SAI tomwalters@32: vector sai_temporal_profile(buffer_length_, 0.0f); tomwalters@32: for (int i = 0; i < buffer_length_; ++i) { tomwalters@32: float val = 0.0f; tomwalters@32: for (int ch = 0; ch < channel_count_; ++ch) { tomwalters@32: val += input.sample(ch, i); tomwalters@32: } tomwalters@32: sai_temporal_profile[i] = val; tomwalters@32: } tomwalters@32: tomwalters@32: // Find pitch value tomwalters@32: int start_sample = floor(pitch_search_start_ms_ * sample_rate_ / 1000.0f); tomwalters@32: int max_idx = 0; tomwalters@32: float max_val = 0.0f; tomwalters@32: for (int i = start_sample; i < buffer_length_; ++i) { tomwalters@32: if (sai_temporal_profile[i] > max_val) { tomwalters@32: max_idx = i; tomwalters@32: max_val = sai_temporal_profile[i]; tomwalters@32: } tomwalters@32: } tomwalters@32: return max_idx; tomwalters@32: } tomwalters@32: tomwalters@12: void ModuleSSI::Process(const SignalBank &input) { tomwalters@12: // Check to see if the module has been initialized. If not, processing tomwalters@12: // should not continue. tomwalters@12: if (!initialized_) { tomwalters@13: LOG_ERROR(_T("Module %s not initialized."), module_identifier_.c_str()); tomwalters@12: return; tomwalters@12: } tomwalters@12: tomwalters@12: // Check that ths input this time is the same as the input passed to tomwalters@12: // Initialize() tomwalters@12: if (buffer_length_ != input.buffer_length() tomwalters@12: || channel_count_ != input.channel_count()) { tomwalters@12: LOG_ERROR(_T("Mismatch between input to Initialize() and input to " tomwalters@13: "Process() in module %s."), module_identifier_.c_str()); tomwalters@12: return; tomwalters@12: } tomwalters@12: tomwalters@15: output_.set_start_time(input.start_time()); tomwalters@12: tomwalters@32: int pitch_index = buffer_length_ - 1; tomwalters@32: if (do_pitch_cutoff_) { tomwalters@32: pitch_index = ExtractPitchIndex(input); tomwalters@32: } tomwalters@32: tomwalters@15: for (int ch = 0; ch < channel_count_; ++ch) { tomwalters@32: float centre_frequency = input.centre_frequency(ch); tomwalters@15: // Copy the buffer from input to output, addressing by h-value tomwalters@15: for (int i = 0; i < ssi_width_samples_; ++i) { tomwalters@32: float h; tomwalters@32: float cycle_samples = sample_rate_ / centre_frequency; tomwalters@32: if (log_cycles_axis_) { tomwalters@32: float gamma_min = -1.0f; tomwalters@32: float gamma_max = log2(ssi_width_cycles_); tomwalters@32: float gamma = gamma_min + (gamma_max - gamma_min) tomwalters@32: * static_cast(i) tomwalters@32: / static_cast(ssi_width_samples_); tomwalters@32: h = pow(2.0f, gamma); tomwalters@32: } else { tomwalters@32: h = static_cast(i) * ssi_width_cycles_ tomwalters@32: / static_cast(ssi_width_samples_); tomwalters@32: } tomwalters@12: tomwalters@15: // The index into the input array is a floating-point number, which is tomwalters@15: // split into a whole part and a fractional part. The whole part and tomwalters@15: // fractional part are found, and are used to linearly interpolate tomwalters@15: // between input samples to yield an output sample. tomwalters@15: double whole_part; tomwalters@15: float frac_part = modf(h * cycle_samples, &whole_part); tomwalters@32: int sample = floor(whole_part); tomwalters@32: tomwalters@32: float weight = 1.0f; tomwalters@32: tomwalters@32: int cutoff_index = buffer_length_ - 1; tomwalters@32: if (do_pitch_cutoff_) { tomwalters@32: if (pitch_index < cutoff_index) { tomwalters@32: if (weight_by_cutoff_) { tomwalters@32: weight *= static_cast(buffer_length_) tomwalters@32: / static_cast(pitch_index); tomwalters@32: } tomwalters@32: cutoff_index = pitch_index; tomwalters@32: } tomwalters@32: } tomwalters@32: tomwalters@32: if (weight_by_scaling_) { tomwalters@32: if (centre_frequency > pivot_cf_) { tomwalters@32: weight *= (centre_frequency / pivot_cf_); tomwalters@32: } tomwalters@32: } tomwalters@15: tomwalters@15: float val; tomwalters@32: if (sample < cutoff_index) { tomwalters@15: float curr_sample = input.sample(ch, sample); tomwalters@15: float next_sample = input.sample(ch, sample + 1); tomwalters@32: val = weight * (curr_sample tomwalters@32: + frac_part * (next_sample - curr_sample)); tomwalters@15: } else { tomwalters@36: val = 0.0f; tomwalters@15: } tomwalters@15: output_.set_sample(ch, i, val); tomwalters@15: } tomwalters@15: } tomwalters@12: PushOutput(); tomwalters@12: } tomwalters@12: } // namespace aimc tomwalters@12: