tomwalters@423: #!/usr/bin/python tomwalters@423: """ tomwalters@423: plot_munged_results.py tomwalters@423: tomwalters@423: """ tomwalters@423: tom@440: import matplotlib as mpl tom@440: mpl.use('PDF') tomwalters@423: import numpy as np tomwalters@423: import pylab as p tom@440: #import matplotlib.pyplot as plt tomwalters@425: tomwalters@423: f=open("results_test_all.csv","r") tomwalters@423: results = dict() tomwalters@423: for line in f: tomwalters@423: if line[0] != "#": tomwalters@423: values = line.strip().split(",") tomwalters@423: results.setdefault(values[3],dict()) tomwalters@423: results[values[3]].setdefault(values[0], dict()) tomwalters@423: results[values[3]][values[0]].setdefault(values[1], dict()) tomwalters@424: results[values[3]][values[0]][values[1]].setdefault(int(values[4]), dict()) tomwalters@424: results[values[3]][values[0]][values[1]][int(values[4])].setdefault(int(values[5]), dict()) tomwalters@424: results[values[3]][values[0]][values[1]][int(values[4])][int(values[5])].setdefault(int(values[6]), dict()) tomwalters@423: if values[2] == 'clean': tomwalters@424: snr = 50 tom@440: results[values[3]][values[0]][values[1]][int(values[4])][int(values[5])][int(values[6])][snr] = float(values[7]) tomwalters@423: else: tomwalters@423: snr = int(values[2]) tomwalters@425: results[values[3]][values[0]][values[1]][int(values[4])][int(values[5])][int(values[6])][snr] = float(values[7]) tomwalters@423: # results[values[3]].append((values[1],values[2],values[2],values[4])) tomwalters@423: tom@440: ax = mpl.pyplot.subplot(111) tomwalters@423: train_set = 'inner' tom@440: for hmm_iterations in [2,3,15]: tom@440: for hmm_states in [3,4]: tom@440: for hmm_components in [3,4]: tom@440: lines = [] tom@440: labels = [] tom@440: ax.cla() tom@440: for feature_type in ('mfcc', 'mfcc_vtln', 'aim'): tom@440: for feature_subtype in results[train_set][feature_type].keys(): tom@440: try: tom@440: this_line = results[train_set][feature_type][feature_subtype][hmm_states][hmm_components][hmm_iterations].items() tom@440: this_line.sort(cmp=lambda x,y: x[0] - y[0]) tom@440: xs, ys = zip(*this_line) tom@440: xs = list(xs) tom@440: ys = list(ys) tom@440: line, = ax.plot(xs,ys,'-o',linewidth=2) tom@440: lines.append(line) tom@440: labels.append(feature_type + "_" + feature_subtype) tom@440: except KeyError: tom@440: print "Data not found" tom@440: p.legend(lines, labels, 'upper left', shadow=True) tom@440: p.xlabel('SNR/dB') tom@440: p.ylabel('Recognition performance %') tom@440: output_file = ("recognition_vs_snr_%diterations_%dstates_%d_components.pdf" % (hmm_iterations, hmm_states, hmm_components)) tom@440: p.savefig(output_file)