tomwalters@0: // Copyright 2006-2010, Thomas Walters tomwalters@0: // tomwalters@0: // AIM-C: A C++ implementation of the Auditory Image Model tomwalters@0: // http://www.acousticscale.org/AIMC tomwalters@0: // tomwalters@0: // This program is free software: you can redistribute it and/or modify tomwalters@0: // it under the terms of the GNU General Public License as published by tomwalters@0: // the Free Software Foundation, either version 3 of the License, or tomwalters@0: // (at your option) any later version. tomwalters@0: // tomwalters@0: // This program is distributed in the hope that it will be useful, tomwalters@0: // but WITHOUT ANY WARRANTY; without even the implied warranty of tomwalters@0: // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the tomwalters@0: // GNU General Public License for more details. tomwalters@0: // tomwalters@0: // You should have received a copy of the GNU General Public License tomwalters@0: // along with this program. If not, see . tomwalters@0: tomwalters@0: /*! \file tomwalters@0: * \brief SAI module tomwalters@0: */ tomwalters@0: tomwalters@0: /* tomwalters@0: * \author Thomas Walters tomwalters@0: * \date created 2007/08/29 tomwalters@0: * \version \$Id: ModuleSAI.cc 4 2010-02-03 18:44:58Z tcw $ tomwalters@0: */ tomwalters@0: #include tomwalters@0: tomwalters@0: #include "Modules/SAI/ModuleSAI.h" tomwalters@0: tomwalters@5: namespace aimc { tomwalters@0: ModuleSAI::ModuleSAI(Parameters *parameters) : Module(parameters) { tomwalters@5: module_identifier_ = "weighted_sai"; tomwalters@5: module_type_ = "sai"; tomwalters@0: module_description_ = "Stabilised auditory image"; tomwalters@5: module_version_ = "$Id: ModuleSAI.cc 4 2010-02-03 18:44:58Z tcw $"; tomwalters@0: tomwalters@0: min_delay_ms_ = parameters_->DefaultFloat("sai.min_delay_ms", 0.0f); tomwalters@0: max_delay_ms_ = parameters_->DefaultFloat("sai.max_delay_ms", 35.0f); tomwalters@0: strobe_weight_alpha_ = parameters_->DefaultFloat("sai.strobe_weight_alpha", tomwalters@0: 0.5f); tomwalters@0: buffer_memory_decay_ = parameters_->DefaultFloat("sai.buffer_memory_decay", tomwalters@0: 0.03f); tomwalters@0: frame_period_ms_ = parameters_->DefaultFloat("sai.frame_period_ms", 20.0f); tomwalters@0: tomwalters@5: max_concurrent_strobes_ tomwalters@5: = parameters_->DefaultInt("sai.max_concurrent_strobes", 50); tomwalters@5: tomwalters@5: min_strobe_delay_idx_ = 0; tomwalters@5: max_strobe_delay_idx_ = 0; tomwalters@0: sai_decay_factor_ = 0.0f; tomwalters@5: fire_counter_ = 0; tomwalters@0: } tomwalters@0: tomwalters@0: bool ModuleSAI::InitializeInternal(const SignalBank &input) { tomwalters@0: // The SAI output bank must be as long as the SAI's Maximum delay. tomwalters@0: // One sample is added to the SAI buffer length to account for the tomwalters@0: // zero-lag point tomwalters@6: int sai_buffer_length = 1 + floor(input.sample_rate() * max_delay_ms_ tomwalters@6: / 1000.0f); tomwalters@5: channel_count_ = input.channel_count(); tomwalters@0: tomwalters@0: // Make an output SignalBank with the same number of channels and centre tomwalters@0: // frequencies as the input, but with a different buffer length tomwalters@0: if (!output_.Initialize(input.channel_count(), tomwalters@0: sai_buffer_length, tomwalters@5: input.sample_rate())) { tomwalters@0: LOG_ERROR("Failed to create output buffer in SAI module"); tomwalters@0: return false; tomwalters@0: } tomwalters@0: for (int i = 0; i < input.channel_count(); ++i ) { tomwalters@5: output_.set_centre_frequency(i, input.centre_frequency(i)); tomwalters@0: } tomwalters@0: tomwalters@0: // sai_temp_ will be initialized to zero tomwalters@0: if (!sai_temp_.Initialize(output_)) { tomwalters@0: LOG_ERROR("Failed to create temporary buffer in SAI module"); tomwalters@0: return false; tomwalters@0: } tomwalters@0: tomwalters@5: frame_period_samples_ = floor(input.sample_rate() * frame_period_ms_ tomwalters@5: / 1000.0f); tomwalters@5: min_strobe_delay_idx_ = floor(input.sample_rate() * min_delay_ms_ tomwalters@5: / 1000.0f); tomwalters@5: max_strobe_delay_idx_ = floor(input.sample_rate() * max_delay_ms_ tomwalters@5: / 1000.0f); tomwalters@0: tomwalters@0: // Make sure we don't go past the output buffer's upper bound tomwalters@5: if (max_strobe_delay_idx_ > output_.buffer_length()) { tomwalters@0: max_strobe_delay_idx_ = output_.buffer_length(); tomwalters@5: } tomwalters@0: tomwalters@0: // Define decay factor from time since last sample (see ti2003) tomwalters@0: sai_decay_factor_ = pow(0.5f, 1.0f / (buffer_memory_decay_ tomwalters@0: * input.sample_rate())); tomwalters@0: tomwalters@0: // Precompute strobe weights tomwalters@0: strobe_weights_.resize(max_concurrent_strobes_); tomwalters@0: for (int n = 0; n < max_concurrent_strobes_; ++n) { tomwalters@5: strobe_weights_[n] = pow(1.0f / (n + 1), strobe_weight_alpha_); tomwalters@0: } tomwalters@0: tomwalters@5: ResetInternal(); tomwalters@0: tomwalters@0: return true; tomwalters@0: } tomwalters@0: tomwalters@3: void ModuleSAI::ResetInternal() { tomwalters@5: // Active Strobes tomwalters@5: active_strobes_.clear(); tomwalters@5: active_strobes_.resize(channel_count_); tomwalters@5: fire_counter_ = frame_period_samples_ - 1; tomwalters@0: } tomwalters@0: tomwalters@0: void ModuleSAI::Process(const SignalBank &input) { tomwalters@0: tomwalters@0: // Reset the next strobe times tomwalters@0: next_strobes_.clear(); tomwalters@0: next_strobes_.resize(output_.channel_count(), 0); tomwalters@0: tomwalters@0: // Offset the times on the strobes from the previous buffer tomwalters@5: for (int ch = 0; ch < input.channel_count(); ++ch) { tomwalters@5: active_strobes_[ch].ShiftStrobes(input.buffer_length()); tomwalters@0: } tomwalters@0: tomwalters@0: // Loop over samples to make the SAI tomwalters@5: for (int i = 0; i < input.buffer_length(); ++i) { tomwalters@0: float decay_factor = pow(sai_decay_factor_, fire_counter_); tomwalters@0: // Loop over channels tomwalters@5: for (int ch = 0; ch < input.channel_count(); ++ch) { tomwalters@0: // Local convenience variables tomwalters@5: StrobeList &active_strobes = active_strobes_[ch]; tomwalters@5: int next_strobe_index = next_strobes_[ch]; tomwalters@0: tomwalters@5: // Update strobes tomwalters@0: // If we are up to or beyond the next strobe... tomwalters@5: if (next_strobe_index < input.strobe_count(ch)) { tomwalters@5: if (i == input.strobe(ch, next_strobe_index)) { tomwalters@5: // A new strobe has arrived. tomwalters@5: // If there are too many strobes active, then get rid of the tomwalters@5: // earliest one tomwalters@5: if (active_strobes.strobe_count() >= max_concurrent_strobes_) { tomwalters@5: active_strobes.DeleteFirstStrobe(); tomwalters@0: } tomwalters@0: tomwalters@5: // Add the active strobe to the list of current strobes and tomwalters@5: // calculate the strobe weight tomwalters@5: float weight = 1.0f; tomwalters@5: if (active_strobes.strobe_count() > 0) { tomwalters@5: int last_strobe_time = active_strobes.Strobe( tomwalters@5: active_strobes.strobe_count() - 1).time; tomwalters@5: tomwalters@5: // If the strobe occured within 10 impulse-response tomwalters@5: // cycles of the previous strobe, then lower its weight tomwalters@5: weight = (i - last_strobe_time) / input.sample_rate() tomwalters@5: * input.centre_frequency(ch) / 10.0f; tomwalters@5: if (weight > 1.0f) tomwalters@5: weight = 1.0f; tomwalters@5: } tomwalters@5: active_strobes.AddStrobe(i, weight); tomwalters@5: next_strobe_index++; tomwalters@5: tomwalters@5: tomwalters@5: // Update the strobe weights tomwalters@0: float total_strobe_weight = 0.0f; tomwalters@5: for (int si = 0; si < active_strobes.strobe_count(); ++si) { tomwalters@5: total_strobe_weight += (active_strobes.Strobe(si).weight tomwalters@5: * strobe_weights_[active_strobes.strobe_count() - si - 1]); tomwalters@0: } tomwalters@5: for (int si = 0; si < active_strobes.strobe_count(); ++si) { tomwalters@5: active_strobes.SetWorkingWeight(si, tomwalters@5: (active_strobes.Strobe(si).weight tomwalters@5: * strobe_weights_[active_strobes.strobe_count() - si - 1]) tomwalters@5: / total_strobe_weight); tomwalters@0: } tomwalters@0: } tomwalters@0: } tomwalters@0: tomwalters@5: // Remove inactive strobes tomwalters@5: while (active_strobes.strobe_count() > 0) { tomwalters@5: // Get the relative time of the first strobe, and see if it exceeds tomwalters@5: // the maximum allowed time. tomwalters@5: if ((i - active_strobes.Strobe(0).time) > max_strobe_delay_idx_) tomwalters@5: active_strobes.DeleteFirstStrobe(); tomwalters@0: else tomwalters@0: break; tomwalters@0: } tomwalters@0: tomwalters@5: // Update the SAI buffer with the weighted effect of all the active tomwalters@5: // strobes at the current sample tomwalters@5: for (int si = 0; si < active_strobes.strobe_count(); ++si) { tomwalters@5: // Add the effect of active strobe at correct place in the SAI buffer tomwalters@5: // Calculate 'delay', the time from the strobe event to now tomwalters@5: int delay = i - active_strobes.Strobe(si).time; tomwalters@0: tomwalters@0: // If the delay is greater than the (user-set) tomwalters@0: // minimum strobe delay, the strobe can be used tomwalters@5: if (delay >= min_strobe_delay_idx_ && delay < max_strobe_delay_idx_) { tomwalters@0: // The value at be added to the SAI tomwalters@5: float sig = input.sample(ch, i); tomwalters@0: tomwalters@0: // Weight the sample correctly tomwalters@5: sig *= active_strobes.Strobe(si).working_weight; tomwalters@0: tomwalters@0: // Adjust the weight acording to the number of samples until the tomwalters@0: // next output frame tomwalters@5: sig *= decay_factor; tomwalters@0: tomwalters@0: // Update the temporary SAI buffer tomwalters@5: output_.set_sample(ch, delay, output_.sample(ch, delay) + sig); tomwalters@0: } tomwalters@0: } tomwalters@0: tomwalters@5: next_strobes_[ch] = next_strobe_index; tomwalters@0: tomwalters@0: } // End loop over channels tomwalters@0: tomwalters@5: fire_counter_--; tomwalters@0: tomwalters@5: // Check to see if we need to output an SAI frame on this sample tomwalters@5: if (fire_counter_ <= 0) { tomwalters@0: // Decay the SAI by the correct amount and add the current output frame tomwalters@5: float decay = pow(sai_decay_factor_, frame_period_samples_); tomwalters@0: tomwalters@5: for (int ch = 0; ch < input.channel_count(); ++ch) { tomwalters@0: for (int i = 0; i < output_.buffer_length(); ++i) { tomwalters@5: output_.set_sample(ch, i, tomwalters@5: sai_temp_[ch][i] + output_[ch][i] * decay); tomwalters@0: } tomwalters@0: } tomwalters@0: tomwalters@0: // Zero the temporary signal tomwalters@0: for (int ch = 0; ch < sai_temp_.channel_count(); ++ch) { tomwalters@0: for (int i = 0; i < sai_temp_.buffer_length(); ++i) { tomwalters@0: sai_temp_.set_sample(ch, i, 0.0f); tomwalters@0: } tomwalters@0: } tomwalters@0: tomwalters@5: fire_counter_ = frame_period_samples_ - 1; tomwalters@0: tomwalters@5: // Transfer the current time to the output buffer tomwalters@5: output_.set_start_time(input.start_time() + i); tomwalters@0: PushOutput(); tomwalters@0: } tomwalters@0: } // End loop over samples tomwalters@0: } tomwalters@0: tomwalters@0: ModuleSAI::~ModuleSAI() { tomwalters@0: } tomwalters@5: } // namespace aimc