tom@455: % Copyright 2012, Google, Inc. tom@455: % Author: Richard F. Lyon tom@455: % tom@455: % This Matlab file is part of an implementation of Lyon's cochlear model: tom@455: % "Cascade of Asymmetric Resonators with Fast-Acting Compression" tom@455: % to supplement Lyon's upcoming book "Human and Machine Hearing" tom@455: % tom@455: % Licensed under the Apache License, Version 2.0 (the "License"); tom@455: % you may not use this file except in compliance with the License. tom@455: % You may obtain a copy of the License at tom@455: % tom@455: % http://www.apache.org/licenses/LICENSE-2.0 tom@455: % tom@455: % Unless required by applicable law or agreed to in writing, software tom@455: % distributed under the License is distributed on an "AS IS" BASIS, tom@455: % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. tom@455: % See the License for the specific language governing permissions and tom@455: % limitations under the License. tom@455: tom@455: %% Test/demo hacking for CARFAC Matlab stuff: tom@455: tom@455: clear variables tom@455: tom@455: %% tom@455: file_signal = wavread('plan.wav'); tom@455: tom@455: % file_signal = file_signal(9000+(1:10000)); % trim for a faster test tom@455: file_signal = file_signal(9300+(1:5000)); % trim for a faster test tom@455: tom@455: % repeat with negated signal to compare responses: dicklyon@456: % file_signal = [file_signal; -file_signal]; tom@455: tom@455: % make a long test signal by repeating at different levels: tom@455: test_signal = []; dicklyon@456: for dB = -40:20:0 % -60:20:40 % -80:20:60 tom@455: test_signal = [test_signal; file_signal * 10^(dB/20)]; tom@455: end tom@455: tom@455: %% tom@455: CF_struct = CARFAC_Design; % default design tom@455: tom@455: %% Run mono, then stereo test: tom@455: tom@455: agc_plot_fig_num = 6; tom@455: dicklyon@456: for n_mics = 1:2 tom@455: CF_struct = CARFAC_Init(CF_struct, n_mics); tom@455: tom@455: [nap, CF_struct, nap_decim] = CARFAC_Run(CF_struct, ... tom@455: test_signal, agc_plot_fig_num); tom@455: tom@455: % nap = deskew(nap); % deskew doesn't make much difference tom@455: dicklyon@456: if n_mics == 1 % because this hack doesn't work for binarual yet dicklyon@456: MultiScaleSmooth(nap_decim, 10); dicklyon@456: end tom@455: tom@455: % nap_decim = nap; tom@455: % nap_decim = smooth1d(nap_decim, 1); tom@455: % nap_decim = nap_decim(1:8:size(nap_decim, 1), :); tom@455: tom@455: % Display results for 1 or 2 mics: tom@455: for mic = 1:n_mics tom@455: smooth_nap = nap_decim(:, :, mic); tom@455: if n_mics == 1 tom@455: mono_max = max(smooth_nap(:)); tom@455: end tom@455: figure(3 + mic + n_mics) % Makes figures 5, ... tom@455: image(63 * ((max(0, smooth_nap)/mono_max)' .^ 0.5)) tom@455: title('smooth nap from nap decim') tom@455: colormap(1 - gray); tom@455: end tom@455: tom@455: % Show resulting data, even though M-Lint complains: tom@455: CF_struct tom@455: CF_struct.k_mod_decim tom@455: CF_struct.filter_state tom@455: CF_struct.AGC_state tom@455: min_max = [min(nap(:)), max(nap(:))] tom@455: min_max_decim = [min(nap_decim(:)), max(nap_decim(:))] tom@455: tom@455: % For the 2-channel pass, add a silent second channel: tom@455: test_signal = [test_signal, zeros(size(test_signal))]; tom@455: end tom@455: tom@455: % Expected result: Figure 3 looks like figure 2, a tiny bit darker. tom@455: % and figure 4 is empty (all zero)