tomwalters@0: // Copyright 2008-2010, Thomas Walters tomwalters@0: // tomwalters@0: // AIM-C: A C++ implementation of the Auditory Image Model tomwalters@0: // http://www.acousticscale.org/AIMC tomwalters@0: // tomwalters@45: // Licensed under the Apache License, Version 2.0 (the "License"); tomwalters@45: // you may not use this file except in compliance with the License. tomwalters@45: // You may obtain a copy of the License at tomwalters@0: // tomwalters@45: // http://www.apache.org/licenses/LICENSE-2.0 tomwalters@0: // tomwalters@45: // Unless required by applicable law or agreed to in writing, software tomwalters@45: // distributed under the License is distributed on an "AS IS" BASIS, tomwalters@45: // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. tomwalters@45: // See the License for the specific language governing permissions and tomwalters@45: // limitations under the License. tomwalters@0: tomwalters@0: /*! \file tomwalters@0: * \brief Gaussian features - based on MATLAB code by Christian Feldbauer tomwalters@0: */ tomwalters@0: tomwalters@0: /*! tomwalters@1: * \author Thomas Walters tomwalters@0: * \date created 2008/06/23 tomwalters@23: * \version \$Id$ tomwalters@0: */ tomwalters@0: tomwalters@0: #include tomwalters@0: tomwalters@0: #include "Modules/Features/ModuleGaussians.h" tomwalters@0: #include "Support/Common.h" tomwalters@0: tomwalters@0: namespace aimc { tomwalters@6: ModuleGaussians::ModuleGaussians(Parameters *params) : Module(params) { tomwalters@0: // Set module metadata tomwalters@0: module_description_ = "Gaussian Fitting to SSI profile"; tomwalters@1: module_identifier_ = "gaussians"; tomwalters@0: module_type_ = "features"; tomwalters@23: module_version_ = "$Id$"; tomwalters@0: tomwalters@1: m_iParamNComp = parameters_->DefaultInt("features.gaussians.ncomp", 4); tomwalters@1: m_fParamVar = parameters_->DefaultFloat("features.gaussians.var", 115.0); tomwalters@1: m_fParamPosteriorExp = tomwalters@1: parameters_->DefaultFloat("features.gaussians.posterior_exp", 6.0); tomwalters@1: m_iParamMaxIt = parameters_->DefaultInt("features.gaussians.maxit", 250); tomwalters@0: tomwalters@1: // The parameters system doesn't support tiny numbers well, to define this tomwalters@1: // variable as a string, then convert it to a float afterwards tomwalters@1: parameters_->DefaultString("features.gaussians.priors_converged", "1e-7"); tomwalters@0: m_fParamPriorsConverged = tomwalters@1: parameters_->GetFloat("features.gaussians.priors_converged"); tomwalters@0: } tomwalters@0: tomwalters@0: ModuleGaussians::~ModuleGaussians() { tomwalters@0: } tomwalters@0: tomwalters@0: bool ModuleGaussians::InitializeInternal(const SignalBank &input) { tomwalters@0: m_pA.resize(m_iParamNComp, 0.0f); tomwalters@0: m_pMu.resize(m_iParamNComp, 0.0f); tomwalters@0: tomwalters@0: // Assuming the number of channels is greater than twice the number of tomwalters@0: // Gaussian components, this is ok tomwalters@0: if (input.channel_count() >= 2 * m_iParamNComp) { tomwalters@1: output_.Initialize(m_iParamNComp, 1, input.sample_rate()); tomwalters@0: } else { tomwalters@0: LOG_ERROR(_T("Too few channels in filterbank to produce sensible " tomwalters@0: "Gaussian features. Either increase the number of filterbank" tomwalters@0: " channels, or decrease the number of Gaussian components")); tomwalters@0: return false; tomwalters@0: } tomwalters@0: tomwalters@0: m_iNumChannels = input.channel_count(); tomwalters@0: m_pSpectralProfile.resize(m_iNumChannels, 0.0f); tomwalters@0: tomwalters@0: return true; tomwalters@0: } tomwalters@0: tomwalters@3: void ModuleGaussians::ResetInternal() { tomwalters@0: m_pSpectralProfile.clear(); tomwalters@0: m_pSpectralProfile.resize(m_iNumChannels, 0.0f); tomwalters@20: m_pA.clear(); tomwalters@20: m_pA.resize(m_iParamNComp, 0.0f); tomwalters@20: m_pMu.clear(); tomwalters@20: m_pMu.resize(m_iParamNComp, 0.0f); tomwalters@0: } tomwalters@0: tomwalters@0: void ModuleGaussians::Process(const SignalBank &input) { tomwalters@1: if (!initialized_) { tomwalters@1: LOG_ERROR(_T("Module ModuleGaussians not initialized.")); tomwalters@1: return; tomwalters@1: } tomwalters@0: // Calculate spectral profile tomwalters@0: for (int iChannel = 0; tomwalters@0: iChannel < input.channel_count(); tomwalters@0: ++iChannel) { tomwalters@0: m_pSpectralProfile[iChannel] = 0.0f; tomwalters@0: for (int iSample = 0; tomwalters@0: iSample < input.buffer_length(); tomwalters@0: ++iSample) { tomwalters@0: m_pSpectralProfile[iChannel] += input[iChannel][iSample]; tomwalters@0: } tomwalters@8: m_pSpectralProfile[iChannel] /= static_cast(input.buffer_length()); tomwalters@1: } tomwalters@1: tomwalters@8: float spectral_profile_sum = 0.0f; tomwalters@1: for (int i = 0; i < input.channel_count(); ++i) { tomwalters@1: spectral_profile_sum += m_pSpectralProfile[i]; tomwalters@1: } tomwalters@1: tomwalters@8: float logsum = log(spectral_profile_sum); tomwalters@1: if (!isinf(logsum)) { tomwalters@1: output_.set_sample(m_iParamNComp - 1, 0, logsum); tomwalters@1: } else { tomwalters@1: output_.set_sample(m_iParamNComp - 1, 0, -1000.0); tomwalters@0: } tomwalters@0: tomwalters@0: for (int iChannel = 0; tomwalters@0: iChannel < input.channel_count(); tomwalters@0: ++iChannel) { tomwalters@0: m_pSpectralProfile[iChannel] = pow(m_pSpectralProfile[iChannel], 0.8); tomwalters@0: } tomwalters@0: tomwalters@0: RubberGMMCore(2, true); tomwalters@0: tomwalters@8: float fMean1 = m_pMu[0]; tomwalters@8: float fMean2 = m_pMu[1]; tomwalters@8: // LOG_INFO(_T("Orig. mean 0 = %f"), m_pMu[0]); tomwalters@8: // LOG_INFO(_T("Orig. mean 1 = %f"), m_pMu[1]); tomwalters@8: // LOG_INFO(_T("Orig. prob 0 = %f"), m_pA[0]); tomwalters@8: // LOG_INFO(_T("Orig. prob 1 = %f"), m_pA[1]); tomwalters@0: tomwalters@8: float fA1 = 0.05 * m_pA[0]; tomwalters@8: float fA2 = 1.0 - 0.25 * m_pA[1]; tomwalters@0: tomwalters@8: // LOG_INFO(_T("fA1 = %f"), fA1); tomwalters@8: // LOG_INFO(_T("fA2 = %f"), fA2); tomwalters@2: tomwalters@8: float fGradient = (fMean2 - fMean1) / (fA2 - fA1); tomwalters@8: float fIntercept = fMean2 - fGradient * fA2; tomwalters@2: tomwalters@8: // LOG_INFO(_T("fGradient = %f"), fGradient); tomwalters@8: // LOG_INFO(_T("fIntercept = %f"), fIntercept); tomwalters@0: tomwalters@0: for (int i = 0; i < m_iParamNComp; ++i) { tomwalters@8: m_pMu[i] = (static_cast(i) tomwalters@8: / (static_cast(m_iParamNComp) - 1.0f)) tomwalters@8: * fGradient + fIntercept; tomwalters@8: // LOG_INFO(_T("mean %d = %f"), i, m_pMu[i]); tomwalters@0: } tomwalters@0: tomwalters@0: for (int i = 0; i < m_iParamNComp; ++i) { tomwalters@8: m_pA[i] = 1.0f / static_cast(m_iParamNComp); tomwalters@0: } tomwalters@0: tomwalters@0: RubberGMMCore(m_iParamNComp, false); tomwalters@0: tomwalters@0: for (int i = 0; i < m_iParamNComp - 1; ++i) { tomwalters@0: if (!isnan(m_pA[i])) { tomwalters@0: output_.set_sample(i, 0, m_pA[i]); tomwalters@0: } else { tomwalters@0: output_.set_sample(i, 0, 0.0f); tomwalters@0: } tomwalters@0: } tomwalters@1: tomwalters@0: PushOutput(); tomwalters@0: } tomwalters@0: tomwalters@0: bool ModuleGaussians::RubberGMMCore(int iNComponents, bool bDoInit) { tomwalters@0: int iSizeX = m_iNumChannels; tomwalters@0: tomwalters@0: // Normalise the spectral profile tomwalters@8: float fSpectralProfileTotal = 0.0f; tomwalters@0: for (int iCount = 0; iCount < iSizeX; iCount++) { tomwalters@0: fSpectralProfileTotal += m_pSpectralProfile[iCount]; tomwalters@0: } tomwalters@0: for (int iCount = 0; iCount < iSizeX; iCount++) { tomwalters@0: m_pSpectralProfile[iCount] /= fSpectralProfileTotal; tomwalters@0: } tomwalters@0: tomwalters@0: if (bDoInit) { tomwalters@0: // Uniformly spaced components tomwalters@8: float dd = (iSizeX - 1.0f) / iNComponents; tomwalters@0: for (int i = 0; i < iNComponents; i++) { tomwalters@0: m_pMu[i] = dd / 2.0f + (i * dd); tomwalters@0: m_pA[i] = 1.0f / iNComponents; tomwalters@0: } tomwalters@0: } tomwalters@0: tomwalters@8: vector pA_old; tomwalters@0: pA_old.resize(iNComponents); tomwalters@8: vector pP_mod_X; tomwalters@0: pP_mod_X.resize(iSizeX); tomwalters@8: vector pP_comp; tomwalters@0: pP_comp.resize(iSizeX * iNComponents); tomwalters@0: tomwalters@0: for (int iIteration = 0; iIteration < m_iParamMaxIt; iIteration++) { tomwalters@0: // (re)calculate posteriors (component probability given observation) tomwalters@0: // denominator: the model density at all observation points X tomwalters@0: for (int i = 0; i < iSizeX; ++i) { tomwalters@0: pP_mod_X[i] = 0.0f; tomwalters@0: } tomwalters@0: tomwalters@0: for (int i = 0; i < iNComponents; i++) { tomwalters@0: for (int iCount = 0; iCount < iSizeX; iCount++) { tomwalters@0: pP_mod_X[iCount] += 1.0f / sqrt(2.0f * M_PI * m_fParamVar) tomwalters@8: * exp((-0.5f) tomwalters@8: * pow(static_cast(iCount+1) - m_pMu[i], 2) tomwalters@8: / m_fParamVar) * m_pA[i]; tomwalters@0: } tomwalters@0: } tomwalters@0: tomwalters@0: for (int i = 0; i < iSizeX * iNComponents; ++i) { tomwalters@0: pP_comp[i] = 0.0f; tomwalters@0: } tomwalters@0: tomwalters@0: for (int i = 0; i < iNComponents; i++) { tomwalters@0: for (int iCount = 0; iCount < iSizeX; iCount++) { tomwalters@0: pP_comp[iCount + i * iSizeX] = tomwalters@0: 1.0f / sqrt(2.0f * M_PI * m_fParamVar) tomwalters@8: * exp((-0.5f) * pow((static_cast(iCount + 1) - m_pMu[i]), 2) tomwalters@8: / m_fParamVar); tomwalters@0: pP_comp[iCount + i * iSizeX] = tomwalters@0: pP_comp[iCount + i * iSizeX] * m_pA[i] / pP_mod_X[iCount]; tomwalters@0: } tomwalters@0: } tomwalters@0: tomwalters@0: for (int iCount = 0; iCount < iSizeX; ++iCount) { tomwalters@8: float fSum = 0.0f; tomwalters@0: for (int i = 0; i < iNComponents; ++i) { tomwalters@0: pP_comp[iCount+i*iSizeX] = pow(pP_comp[iCount + i * iSizeX], tomwalters@8: m_fParamPosteriorExp); // expansion tomwalters@0: fSum += pP_comp[iCount+i*iSizeX]; tomwalters@0: } tomwalters@0: for (int i = 0; i < iNComponents; ++i) tomwalters@0: pP_comp[iCount+i*iSizeX] = pP_comp[iCount + i * iSizeX] / fSum; tomwalters@0: // renormalisation tomwalters@0: } tomwalters@0: tomwalters@0: for (int i = 0; i < iNComponents; ++i) { tomwalters@0: pA_old[i] = m_pA[i]; tomwalters@0: m_pA[i] = 0.0f; tomwalters@0: for (int iCount = 0; iCount < iSizeX; ++iCount) { tomwalters@0: m_pA[i] += pP_comp[iCount + i * iSizeX] * m_pSpectralProfile[iCount]; tomwalters@0: } tomwalters@0: } tomwalters@0: tomwalters@0: // finish when already converged tomwalters@8: float fPrdist = 0.0f; tomwalters@0: for (int i = 0; i < iNComponents; ++i) { tomwalters@0: fPrdist += pow((m_pA[i] - pA_old[i]), 2); tomwalters@0: } tomwalters@0: fPrdist /= iNComponents; tomwalters@0: tomwalters@0: if (fPrdist < m_fParamPriorsConverged) { tomwalters@8: // LOG_INFO("Converged!"); tomwalters@0: break; tomwalters@0: } tomwalters@8: // LOG_INFO("Didn't converge!"); tomwalters@2: tomwalters@0: tomwalters@0: // update means (positions) tomwalters@0: for (int i = 0 ; i < iNComponents; ++i) { tomwalters@8: float mu_old = m_pMu[i]; tomwalters@0: if (m_pA[i] > 0.0f) { tomwalters@0: m_pMu[i] = 0.0f; tomwalters@0: for (int iCount = 0; iCount < iSizeX; ++iCount) { tomwalters@0: m_pMu[i] += m_pSpectralProfile[iCount] tomwalters@8: * pP_comp[iCount + i * iSizeX] tomwalters@8: * static_cast(iCount + 1); tomwalters@0: } tomwalters@0: m_pMu[i] /= m_pA[i]; tomwalters@0: if (isnan(m_pMu[i])) { tomwalters@0: m_pMu[i] = mu_old; tomwalters@0: } tomwalters@0: } tomwalters@0: } tomwalters@8: } // loop over iterations tomwalters@0: tomwalters@0: // Ensure they are sorted, using a really simple bubblesort tomwalters@0: bool bSorted = false; tomwalters@0: while (!bSorted) { tomwalters@0: bSorted = true; tomwalters@0: for (int i = 0; i < iNComponents - 1; ++i) { tomwalters@0: if (m_pMu[i] > m_pMu[i + 1]) { tomwalters@8: float fTemp = m_pMu[i]; tomwalters@0: m_pMu[i] = m_pMu[i + 1]; tomwalters@0: m_pMu[i + 1] = fTemp; tomwalters@0: fTemp = m_pA[i]; tomwalters@0: m_pA[i] = m_pA[i + 1]; tomwalters@0: m_pA[i + 1] = fTemp; tomwalters@0: bSorted = false; tomwalters@0: } tomwalters@0: } tomwalters@0: } tomwalters@0: return true; tomwalters@0: } tomwalters@8: } // namespace aimc tomwalters@0: