alexbrandmeyer@609: // alexbrandmeyer@609: // carfac.cc alexbrandmeyer@609: // CARFAC Open Source C++ Library alexbrandmeyer@609: // alexbrandmeyer@609: // Created by Alex Brandmeyer on 5/10/13. alexbrandmeyer@609: // alexbrandmeyer@609: // This C++ file is part of an implementation of Lyon's cochlear model: alexbrandmeyer@609: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" alexbrandmeyer@609: // to supplement Lyon's upcoming book "Human and Machine Hearing" alexbrandmeyer@609: // alexbrandmeyer@609: // Licensed under the Apache License, Version 2.0 (the "License"); alexbrandmeyer@609: // you may not use this file except in compliance with the License. alexbrandmeyer@609: // You may obtain a copy of the License at alexbrandmeyer@609: // alexbrandmeyer@609: // http://www.apache.org/licenses/LICENSE-2.0 alexbrandmeyer@609: // alexbrandmeyer@609: // Unless required by applicable law or agreed to in writing, software alexbrandmeyer@609: // distributed under the License is distributed on an "AS IS" BASIS, alexbrandmeyer@609: // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. alexbrandmeyer@609: // See the License for the specific language governing permissions and alexbrandmeyer@609: // limitations under the License. alexbrandmeyer@609: alexbrandmeyer@609: #include "carfac.h" ronw@625: alexbrandmeyer@626: void CARFAC::Design(const int n_ears, const FPType fs, alexbrandmeyer@626: const CARParams& car_params, const IHCParams& ihc_params, alexbrandmeyer@626: const AGCParams& agc_params) { alexbrandmeyer@609: n_ears_ = n_ears; alexbrandmeyer@609: fs_ = fs; alexbrandmeyer@611: ears_.resize(n_ears_); alexbrandmeyer@610: alexbrandmeyer@610: n_ch_ = 0; alexbrandmeyer@610: FPType pole_hz = car_params.first_pole_theta_ * fs / (2 * PI); alexbrandmeyer@610: while (pole_hz > car_params.min_pole_hz_) { alexbrandmeyer@626: ++n_ch_; alexbrandmeyer@610: pole_hz = pole_hz - car_params.erb_per_step_ * alexbrandmeyer@610: ERBHz(pole_hz, car_params.erb_break_freq_, car_params.erb_q_); alexbrandmeyer@609: } alexbrandmeyer@626: pole_freqs_.resize(n_ch_); alexbrandmeyer@610: pole_hz = car_params.first_pole_theta_ * fs / (2 * PI); alexbrandmeyer@626: for (int ch = 0; ch < n_ch_; ++ch) { alexbrandmeyer@626: pole_freqs_(ch) = pole_hz; alexbrandmeyer@610: pole_hz = pole_hz - car_params.erb_per_step_ * alexbrandmeyer@610: ERBHz(pole_hz, car_params.erb_break_freq_, car_params.erb_q_); alexbrandmeyer@610: } alexbrandmeyer@626: max_channels_per_octave_ = log(2) / log(pole_freqs_(0) / pole_freqs_(1)); alexbrandmeyer@610: // Once we have the basic information about the pole frequencies and the alexbrandmeyer@610: // number of channels, we initialize the ear(s). alexbrandmeyer@626: for (auto& ear : ears_) { alexbrandmeyer@626: ear.InitEar(n_ch_, fs_, pole_freqs_, car_params, ihc_params, alexbrandmeyer@626: agc_params); alexbrandmeyer@610: } alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@626: CARFACOutput CARFAC::Run(const std::vector>& sound_data) { alexbrandmeyer@610: // We initialize one output object to store the final output. alexbrandmeyer@626: CARFACOutput seg_output; alexbrandmeyer@626: int n_audio_channels = sound_data.size(); alexbrandmeyer@611: int32_t seg_len = 441; // We use a fixed segment length for now. alexbrandmeyer@626: int32_t n_timepoints = sound_data[0].size(); alexbrandmeyer@611: int32_t n_segs = ceil((n_timepoints * 1.0) / seg_len); alexbrandmeyer@626: seg_output.InitOutput(n_audio_channels, n_ch_, n_timepoints); alexbrandmeyer@610: // These values store the start and endpoints for each segment alexbrandmeyer@611: int32_t start; alexbrandmeyer@611: int32_t length = seg_len; alexbrandmeyer@610: // This section loops over the individual audio segments. alexbrandmeyer@626: for (int32_t i = 0; i < n_segs; ++i) { alexbrandmeyer@610: // For each segment we calculate the start point and the segment length. alexbrandmeyer@610: start = i * seg_len; alexbrandmeyer@610: if (i == n_segs - 1) { alexbrandmeyer@610: // The last segment can be shorter than the rest. alexbrandmeyer@610: length = n_timepoints - start; alexbrandmeyer@609: } alexbrandmeyer@626: std::vector> segment_data; alexbrandmeyer@626: segment_data.resize(n_audio_channels); alexbrandmeyer@626: for (int channel = 0; channel < n_audio_channels; ++channel) { alexbrandmeyer@626: segment_data[channel].resize(length); alexbrandmeyer@626: for (int32_t timepoint = 0; timepoint < length; ++timepoint) { alexbrandmeyer@626: segment_data[channel][timepoint] = alexbrandmeyer@626: sound_data[channel][start + timepoint]; alexbrandmeyer@626: } alexbrandmeyer@626: } alexbrandmeyer@610: // Once we've determined the start point and segment length, we run the alexbrandmeyer@610: // CARFAC model on the current segment. alexbrandmeyer@626: RunSegment(segment_data, start, alexbrandmeyer@626: length, &seg_output, true); alexbrandmeyer@610: // Afterwards we merge the output for the current segment into the larger alexbrandmeyer@610: // output structure for the entire audio file. alexbrandmeyer@609: } alexbrandmeyer@626: return seg_output; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@626: void CARFAC::RunSegment(const std::vector>& sound_data, alexbrandmeyer@626: const int32_t start, const int32_t length, alexbrandmeyer@626: CARFACOutput* seg_output, const bool open_loop) { alexbrandmeyer@626: // The number of ears is equal to the number of audio channels. This could alexbrandmeyer@626: // potentially be removed since we already know the n_ears_ during the design alexbrandmeyer@626: // stage. alexbrandmeyer@626: int n_ears = sound_data.size(); alexbrandmeyer@610: // The number of timepoints is determined from the length of the audio alexbrandmeyer@610: // segment. alexbrandmeyer@626: int32_t n_timepoints = sound_data[0].size(); alexbrandmeyer@610: // A nested loop structure is used to iterate through the individual samples alexbrandmeyer@610: // for each ear (audio channel). alexbrandmeyer@611: FloatArray car_out(n_ch_); alexbrandmeyer@611: FloatArray ihc_out(n_ch_); alexbrandmeyer@626: bool updated; // This variable is used by the AGC stage. alexbrandmeyer@626: for (int32_t i = 0; i < n_timepoints; ++i) { alexbrandmeyer@626: for (int j = 0; j < n_ears; ++j) { alexbrandmeyer@626: // First we create a reference to the current Ear object. alexbrandmeyer@626: Ear& ear = ears_[j]; alexbrandmeyer@610: // This stores the audio sample currently being processed. alexbrandmeyer@626: FPType input = sound_data[j][i]; alexbrandmeyer@610: // Now we apply the three stages of the model in sequence to the current alexbrandmeyer@610: // audio sample. alexbrandmeyer@626: ear.CARStep(input, &car_out); alexbrandmeyer@626: ear.IHCStep(car_out, &ihc_out); alexbrandmeyer@626: updated = ear.AGCStep(ihc_out); alexbrandmeyer@610: // These lines assign the output of the model for the current sample alexbrandmeyer@610: // to the appropriate data members of the current ear in the output alexbrandmeyer@610: // object. alexbrandmeyer@626: seg_output->StoreNAPOutput(start + i, j, ihc_out); alexbrandmeyer@626: seg_output->StoreBMOutput(start + i, j, car_out); alexbrandmeyer@626: seg_output->StoreOHCOutput(start + i, j, ear.za_memory()); alexbrandmeyer@626: seg_output->StoreAGCOutput(start + i, j, ear.zb_memory()); alexbrandmeyer@610: } alexbrandmeyer@626: if (updated && n_ears > 1) { alexbrandmeyer@626: CrossCouple(); alexbrandmeyer@626: } alexbrandmeyer@626: if (! open_loop) { alexbrandmeyer@626: CloseAGCLoop(); alexbrandmeyer@626: } alexbrandmeyer@610: } alexbrandmeyer@610: } alexbrandmeyer@610: alexbrandmeyer@610: void CARFAC::CrossCouple() { alexbrandmeyer@626: for (int stage = 0; stage < ears_[0].agc_nstages(); ++stage) { alexbrandmeyer@626: if (ears_[0].agc_decim_phase(stage) > 0) { alexbrandmeyer@610: break; alexbrandmeyer@610: } else { alexbrandmeyer@626: FPType mix_coeff = ears_[0].agc_mix_coeff(stage); alexbrandmeyer@610: if (mix_coeff > 0) { alexbrandmeyer@610: FloatArray stage_state; alexbrandmeyer@610: FloatArray this_stage_values = FloatArray::Zero(n_ch_); alexbrandmeyer@626: for (auto& ear : ears_) { alexbrandmeyer@626: stage_state = ear.agc_memory(stage); alexbrandmeyer@610: this_stage_values += stage_state; alexbrandmeyer@610: } alexbrandmeyer@610: this_stage_values /= n_ears_; alexbrandmeyer@626: for (auto& ear : ears_) { alexbrandmeyer@626: stage_state = ear.agc_memory(stage); alexbrandmeyer@626: ear.set_agc_memory(stage, stage_state + mix_coeff * alexbrandmeyer@626: (this_stage_values - stage_state)); alexbrandmeyer@610: } alexbrandmeyer@610: } alexbrandmeyer@609: } alexbrandmeyer@609: } alexbrandmeyer@609: } alexbrandmeyer@610: alexbrandmeyer@610: void CARFAC::CloseAGCLoop() { alexbrandmeyer@626: for (auto& ear: ears_) { alexbrandmeyer@626: FloatArray undamping = 1 - ear.agc_memory(0); alexbrandmeyer@610: // This updates the target stage gain for the new damping. alexbrandmeyer@626: ear.set_dzb_memory((ear.zr_coeffs() * undamping - ear.zb_memory()) / alexbrandmeyer@626: ear.agc_decimation(0)); alexbrandmeyer@626: ear.set_dg_memory((ear.StageGValue(undamping) - ear.g_memory()) / alexbrandmeyer@626: ear.agc_decimation(0)); alexbrandmeyer@610: } alexbrandmeyer@626: }