alexbrandmeyer@609: // alexbrandmeyer@609: // carfac.cc alexbrandmeyer@609: // CARFAC Open Source C++ Library alexbrandmeyer@609: // alexbrandmeyer@609: // Created by Alex Brandmeyer on 5/10/13. alexbrandmeyer@609: // alexbrandmeyer@609: // This C++ file is part of an implementation of Lyon's cochlear model: alexbrandmeyer@609: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" alexbrandmeyer@609: // to supplement Lyon's upcoming book "Human and Machine Hearing" alexbrandmeyer@609: // alexbrandmeyer@609: // Licensed under the Apache License, Version 2.0 (the "License"); alexbrandmeyer@609: // you may not use this file except in compliance with the License. alexbrandmeyer@609: // You may obtain a copy of the License at alexbrandmeyer@609: // alexbrandmeyer@609: // http://www.apache.org/licenses/LICENSE-2.0 alexbrandmeyer@609: // alexbrandmeyer@609: // Unless required by applicable law or agreed to in writing, software alexbrandmeyer@609: // distributed under the License is distributed on an "AS IS" BASIS, alexbrandmeyer@609: // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. alexbrandmeyer@609: // See the License for the specific language governing permissions and alexbrandmeyer@609: // limitations under the License. alexbrandmeyer@609: alexbrandmeyer@609: #include "carfac.h" alexbrandmeyer@609: void CARFAC::Design(int n_ears, long fs, CARParams car_params, alexbrandmeyer@610: IHCParams ihc_params, AGCParams agc_params) { alexbrandmeyer@609: n_ears_ = n_ears; alexbrandmeyer@609: fs_ = fs; alexbrandmeyer@609: ears_ = new Ear[n_ears_]; alexbrandmeyer@610: alexbrandmeyer@610: n_ch_ = 0; alexbrandmeyer@610: FPType pole_hz = car_params.first_pole_theta_ * fs / (2 * PI); alexbrandmeyer@610: while (pole_hz > car_params.min_pole_hz_) { alexbrandmeyer@610: n_ch_++; alexbrandmeyer@610: pole_hz = pole_hz - car_params.erb_per_step_ * alexbrandmeyer@610: ERBHz(pole_hz, car_params.erb_break_freq_, car_params.erb_q_); alexbrandmeyer@609: } alexbrandmeyer@610: FloatArray pole_freqs(n_ch_); alexbrandmeyer@610: pole_hz = car_params.first_pole_theta_ * fs / (2 * PI); alexbrandmeyer@610: for(int ch=0;ch < n_ch_; ch++) { alexbrandmeyer@610: pole_freqs(ch) = pole_hz; alexbrandmeyer@610: pole_hz = pole_hz - car_params.erb_per_step_ * alexbrandmeyer@610: ERBHz(pole_hz, car_params.erb_break_freq_, car_params.erb_q_); alexbrandmeyer@610: } alexbrandmeyer@610: max_channels_per_octave_ = log(2) / log(pole_freqs(0) / pole_freqs(1)); alexbrandmeyer@610: // Once we have the basic information about the pole frequencies and the alexbrandmeyer@610: // number of channels, we initialize the ear(s). alexbrandmeyer@610: for (int i = 0; i < n_ears_; i++) { alexbrandmeyer@610: ears_[i].InitEar(n_ch_, fs_, pole_freqs, car_params, ihc_params, agc_params); alexbrandmeyer@610: } alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@610: CARFACOutput CARFAC::Run(FloatArray2d sound_data, bool open_loop) { alexbrandmeyer@610: // We initialize one output object to store the final output. alexbrandmeyer@609: CARFACOutput *output = new CARFACOutput(); alexbrandmeyer@610: // A second object is used to store the output for the individual segments. alexbrandmeyer@609: CARFACOutput *seg_output = new CARFACOutput(); alexbrandmeyer@609: int n_audio_channels = int(sound_data.cols()); alexbrandmeyer@610: long seg_len = 441; // We use a fixed segment length for now. alexbrandmeyer@609: long n_timepoints = sound_data.rows(); alexbrandmeyer@610: long n_segs = ceil((n_timepoints * 1.0) / seg_len); alexbrandmeyer@609: output->InitOutput(n_audio_channels, n_ch_, n_timepoints); alexbrandmeyer@609: seg_output->InitOutput(n_audio_channels, n_ch_, seg_len); alexbrandmeyer@610: // These values store the start and endpoints for each segment alexbrandmeyer@610: long start; alexbrandmeyer@610: long length = seg_len; alexbrandmeyer@610: // This section loops over the individual audio segments. alexbrandmeyer@610: for (long i = 0; i < n_segs; i++) { alexbrandmeyer@610: // For each segment we calculate the start point and the segment length. alexbrandmeyer@610: start = i * seg_len; alexbrandmeyer@610: if (i == n_segs - 1) { alexbrandmeyer@610: // The last segment can be shorter than the rest. alexbrandmeyer@610: length = n_timepoints - start; alexbrandmeyer@609: } alexbrandmeyer@610: // Once we've determined the start point and segment length, we run the alexbrandmeyer@610: // CARFAC model on the current segment. alexbrandmeyer@610: RunSegment(sound_data.block(start, 0, length, n_audio_channels), alexbrandmeyer@610: seg_output, open_loop); alexbrandmeyer@610: // Afterwards we merge the output for the current segment into the larger alexbrandmeyer@610: // output structure for the entire audio file. alexbrandmeyer@609: output->MergeOutput(*seg_output, start, length); alexbrandmeyer@609: } alexbrandmeyer@609: return *output; alexbrandmeyer@609: } alexbrandmeyer@609: alexbrandmeyer@610: void CARFAC::RunSegment(FloatArray2d sound_data, CARFACOutput *seg_output, alexbrandmeyer@610: bool open_loop) { alexbrandmeyer@610: // The number of timepoints is determined from the length of the audio alexbrandmeyer@610: // segment. alexbrandmeyer@609: long n_timepoints = sound_data.rows(); alexbrandmeyer@610: // The number of ears is equal to the number of audio channels. This could alexbrandmeyer@610: // potentially be removed since we already know the n_ears_ during the design alexbrandmeyer@610: // stage. alexbrandmeyer@609: int n_ears = int(sound_data.cols()); alexbrandmeyer@610: // A nested loop structure is used to iterate through the individual samples alexbrandmeyer@610: // for each ear (audio channel). alexbrandmeyer@610: bool updated; // This variable is used by the AGC stage. alexbrandmeyer@610: for (long i = 0; i < n_timepoints; i++) { alexbrandmeyer@610: for (int j = 0; j < n_ears; j++) { alexbrandmeyer@610: // This stores the audio sample currently being processed. alexbrandmeyer@610: FPType input = sound_data(i, j); alexbrandmeyer@610: // Now we apply the three stages of the model in sequence to the current alexbrandmeyer@610: // audio sample. alexbrandmeyer@609: FloatArray car_out = ears_[j].CARStep(input); alexbrandmeyer@609: FloatArray ihc_out = ears_[j].IHCStep(car_out); alexbrandmeyer@610: updated = ears_[j].AGCStep(ihc_out); alexbrandmeyer@610: // These lines assign the output of the model for the current sample alexbrandmeyer@610: // to the appropriate data members of the current ear in the output alexbrandmeyer@610: // object. alexbrandmeyer@610: seg_output->ears_[j].nap_.block(0, i, n_ch_, 1) = ihc_out; alexbrandmeyer@610: // TODO alexbrandmeyer: Check with Dick to determine the C++ strategy for alexbrandmeyer@610: // storing optional output structures. alexbrandmeyer@610: seg_output->ears_[j].bm_.block(0, i, n_ch_, 1) = car_out; alexbrandmeyer@610: seg_output->ears_[j].ohc_.block(0, 1, n_ch_, 1) = alexbrandmeyer@610: ears_[j].ReturnZAMemory(); alexbrandmeyer@610: seg_output->ears_[j].agc_.block(0, i, n_ch_, 1) = alexbrandmeyer@610: ears_[j].ReturnZBMemory(); alexbrandmeyer@610: } alexbrandmeyer@610: if (updated && n_ears > 1) { CrossCouple(); } alexbrandmeyer@610: if (! open_loop) { CloseAGCLoop(); } alexbrandmeyer@610: } alexbrandmeyer@610: } alexbrandmeyer@610: alexbrandmeyer@610: void CARFAC::CrossCouple() { alexbrandmeyer@610: for (int stage = 0; stage < ears_[0].ReturnAGCNStages(); stage++) { alexbrandmeyer@610: if (ears_[0].ReturnAGCStateDecimPhase(stage) > 0) { alexbrandmeyer@610: break; alexbrandmeyer@610: } else { alexbrandmeyer@610: FPType mix_coeff = ears_[0].ReturnAGCMixCoeff(stage); alexbrandmeyer@610: if (mix_coeff > 0) { alexbrandmeyer@610: FloatArray stage_state; alexbrandmeyer@610: FloatArray this_stage_values = FloatArray::Zero(n_ch_); alexbrandmeyer@610: for (int ear = 0; ear < n_ears_; ear++) { alexbrandmeyer@610: stage_state = ears_[ear].ReturnAGCStateMemory(stage); alexbrandmeyer@610: this_stage_values += stage_state; alexbrandmeyer@610: } alexbrandmeyer@610: this_stage_values /= n_ears_; alexbrandmeyer@610: for (int ear = 0; ear < n_ears_; ear++) { alexbrandmeyer@610: stage_state = ears_[ear].ReturnAGCStateMemory(stage); alexbrandmeyer@610: ears_[ear].SetAGCStateMemory(stage, alexbrandmeyer@610: stage_state + mix_coeff * alexbrandmeyer@610: (this_stage_values - stage_state)); alexbrandmeyer@610: } alexbrandmeyer@610: } alexbrandmeyer@609: } alexbrandmeyer@609: } alexbrandmeyer@609: } alexbrandmeyer@610: alexbrandmeyer@610: void CARFAC::CloseAGCLoop() { alexbrandmeyer@610: for (int ear = 0; ear < n_ears_; ear++) { alexbrandmeyer@610: FloatArray undamping = 1 - ears_[ear].ReturnAGCStateMemory(1); alexbrandmeyer@610: // This updates the target stage gain for the new damping. alexbrandmeyer@610: ears_[ear].SetCARStateDZBMemory(ears_[ear].ReturnZRCoeffs() * undamping - alexbrandmeyer@610: ears_[ear].ReturnZBMemory() / alexbrandmeyer@610: ears_[ear].ReturnAGCDecimation(1)); alexbrandmeyer@610: ears_[ear].SetCARStateDGMemory((ears_[ear].StageGValue(undamping) - alexbrandmeyer@610: ears_[ear].ReturnGMemory()) / alexbrandmeyer@610: ears_[ear].ReturnAGCDecimation(1)); alexbrandmeyer@610: } alexbrandmeyer@610: }