Mercurial > hg > aimc
view src/Scripts/Profiles_test.py @ 33:f8fe1aadf097
-Modified AIMCopy for slices experiment
-Added gen_features script to just generate features for a given SNR
author | tomwalters |
---|---|
date | Thu, 25 Feb 2010 23:08:08 +0000 |
parents | 645cfd371cff |
children | c5f5e9569863 |
line wrap: on
line source
#!/usr/bin/env python # encoding: utf-8 # # AIM-C: A C++ implementation of the Auditory Image Model # http://www.acousticscale.org/AIMC # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Profiles_test.py Created by Thomas Walters on 2010-02-22. Copyright 2010 Thomas Walters <tom@acousticscale.org> Test the AIM-C model from filterbank to SSI profiles """ import aimc from scipy.io import wavfile from scipy import io import scipy import pylab from itertools import izip, chain, repeat def grouper(n, iterable, padvalue=None): "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')" return izip(*[chain(iterable, repeat(padvalue, n-1))]*n) def main(): wave_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/Sounds/" features_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/work08-jess-original-rec_rubber/features/" file_name = "aa/aa161.1p119.4s100.0t+000itd" wave_suffix = ".wav" features_suffix = ".mat" frame_period_ms = 10; wave_filename = wave_path + file_name + wave_suffix features_filename = features_path + file_name + features_suffix (sample_rate, input_wave) = wavfile.read(wave_filename) wave_length = input_wave.size buffer_length = int(frame_period_ms * sample_rate / 1000) #pylab.plot(input_wave) #pylab.show() input_sig = aimc.SignalBank() input_sig.Initialize(1, buffer_length, sample_rate) parameters = aimc.Parameters() parameters.Load("src/Scripts/profile_features.cfg") mod_gt = aimc.ModuleGammatone(parameters) mod_hl = aimc.ModuleHCL(parameters) mod_profile = aimc.ModuleSlice(parameters) mod_scaler = aimc.ModuleScaler(parameters) mod_gt.AddTarget(mod_hl) mod_hl.AddTarget(mod_profile) mod_profile.AddTarget(mod_scaler) mod_gt.Initialize(input_sig) correct_count = 0; incorrect_count = 0; scaled_wave = [] for sample in input_wave: scaled_wave.append(float(sample / float(pow(2,15) - 1))) i = 0 wave_chunks = grouper(buffer_length, scaled_wave, 0) out_frames = [] for chunk in wave_chunks: i = 0 for sample in chunk: input_sig.set_sample(0, i, float(sample)) i += 1 mod_gt.Process(input_sig) out_sig = mod_scaler.GetOutputBank() channel_count = out_sig.channel_count() out_buffer_length = out_sig.buffer_length() cfs = scipy.zeros((channel_count)) out = scipy.zeros((channel_count, out_buffer_length)) for ch in range(0, channel_count): for i in range(0, out_buffer_length): out[ch, i] = out_sig.sample(ch, i) out_frames.append(out) outmat = dict(profile_out=out_frames) io.savemat("src/Scripts/profile_out.mat", outmat) pass if __name__ == '__main__': main()