Mercurial > hg > aimc
view src/Modules/NAP/ModuleHCL.cc @ 33:f8fe1aadf097
-Modified AIMCopy for slices experiment
-Added gen_features script to just generate features for a given SNR
author | tomwalters |
---|---|
date | Thu, 25 Feb 2010 23:08:08 +0000 |
parents | 491b1b1d1dc5 |
children | c5f5e9569863 |
line wrap: on
line source
// Copyright 2007-2010, Thomas Walters // // AIM-C: A C++ implementation of the Auditory Image Model // http://www.acousticscale.org/AIMC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /*! * \file * \brief Halfwave rectification, compression and lowpass filtering. * * \author Thomas Walters <tom@acousticscale.org> * \date created 2007/03/07 * \version \$Id$ */ #include <cmath> #include "Modules/NAP/ModuleHCL.h" namespace aimc { ModuleHCL::ModuleHCL(Parameters *parameters) : Module(parameters) { module_identifier_ = "hcl"; module_type_ = "nap"; module_description_ = "Halfwave rectification, compression " "and lowpass filtering"; module_version_ = "$Id$"; do_lowpass_ = parameters_->DefaultBool("nap.do_lowpass", true); do_log_ = parameters_->DefaultBool("nap.do_log_compression", false); lowpass_cutoff_ = parameters_->DefaultFloat("nap.lowpass_cutoff", 1200.0); lowpass_order_ = parameters_->DefaultInt("nap.lowpass_order", 2); } ModuleHCL::~ModuleHCL() { } bool ModuleHCL::InitializeInternal(const SignalBank &input) { time_constant_ = 1.0f / (2.0f * M_PI * lowpass_cutoff_); channel_count_ = input.channel_count(); output_.Initialize(input); ResetInternal(); return true; } void ModuleHCL::ResetInternal() { xn_ = 0.0f; yn_ = 0.0f; yns_.clear(); yns_.resize(channel_count_); for (int c = 0; c < channel_count_; ++c) { yns_[c].resize(lowpass_order_, 0.0f); } } /* With do_log, the signal is first scaled up so that values <1.0 become * negligible. This just rescales the sample values to fill the range of a * 16-bit signed integer, then we lose the bottom bit of resolution. If the * signal was sampled at 16-bit resolution, there shouldn't be anything to * speak of there anyway. If it was sampled using a higher resolution, then * some data will be discarded. */ void ModuleHCL::Process(const SignalBank &input) { output_.set_start_time(input.start_time()); for (int c = 0; c < input.channel_count(); ++c) { for (int i = 0; i < input.buffer_length(); ++i) { if (input[c][i] < 0.0f) { output_.set_sample(c, i, 0.0f); } else { float s = input[c][i]; if (do_log_) { s *= pow(2.0f, 15); if (s < 1.0f) s = 1.0f; s = 20.0f * log10(s); } output_.set_sample(c, i, s); } } if (do_lowpass_) { float b = exp(-1.0f / (input.sample_rate() * time_constant_)); float gain = 1.0f / (1.0f - b); for (int j = 0; j < lowpass_order_; j++) { for (int k = 0; k < output_.buffer_length(); ++k) { xn_ = output_[c][k]; yn_ = xn_ + b * yns_[c][j]; yns_[c][j] = yn_; output_.set_sample(c, k, yn_ / gain); } } } } PushOutput(); } } // namespace aimc