Mercurial > hg > aimc
view src/Modules/BMM/ModulePZFC.cc @ 33:f8fe1aadf097
-Modified AIMCopy for slices experiment
-Added gen_features script to just generate features for a given SNR
author | tomwalters |
---|---|
date | Thu, 25 Feb 2010 23:08:08 +0000 |
parents | 491b1b1d1dc5 |
children | 3816c1b1e255 |
line wrap: on
line source
// Copyright 2008-2010, Thomas Walters // // AIM-C: A C++ implementation of the Auditory Image Model // http://www.acousticscale.org/AIMC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /*! \file * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C * module by Tom Walters from the AIM-MAT module based on Dick Lyon's code */ /*! \author Thomas Walters <tom@acousticscale.org> * \date created 2008/02/05 * \version \$Id$ */ #include "Support/ERBTools.h" #include "Modules/BMM/ModulePZFC.h" namespace aimc { ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) { module_identifier_ = "pzfc"; module_type_ = "bmm"; module_description_ = "Pole-Zero Filter Cascade"; module_version_ = "$Id$"; // Get parameter values, setting default values where necessary // Each parameter is set here only if it has not already been set elsewhere. cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f); cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f); pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f); zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f); zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f); step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f); bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf", 0.11f); min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz", 27.0f); agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f); do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true); detect_.resize(0); } ModulePZFC::~ModulePZFC() { } bool ModulePZFC::InitializeInternal(const SignalBank &input) { // Make local convenience copies of some variables sample_rate_ = input.sample_rate(); buffer_length_ = input.buffer_length(); channel_count_ = 0; // Prepare the coefficients and also the output SignalBank if (!SetPZBankCoeffs()) return false; // The output signal bank should be set up by now. if (!output_.initialized()) return false; // This initialises all buffers which can be modified by Process() ResetInternal(); return true; } void ModulePZFC::ResetInternal() { // These buffers may be actively modified by the algorithm agc_state_.clear(); agc_state_.resize(channel_count_); for (int i = 0; i < channel_count_; ++i) { agc_state_[i].clear(); agc_state_[i].resize(agc_stage_count_, 0.0f); } state_1_.clear(); state_1_.resize(channel_count_, 0.0f); state_2_.clear(); state_2_.resize(channel_count_, 0.0f); previous_out_.clear(); previous_out_.resize(channel_count_, 0.0f); pole_damps_mod_.clear(); pole_damps_mod_.resize(channel_count_, 0.0f); inputs_.clear(); inputs_.resize(channel_count_, 0.0f); // Init AGC AGCDampStep(); // pole_damps_mod_ and agc_state_ are now be initialized // Modify the pole dampings and AGC state slightly from their values in // silence in case the input is abuptly loud. for (int i = 0; i < channel_count_; ++i) { pole_damps_mod_[i] += 0.05f; for (int j = 0; j < agc_stage_count_; ++j) agc_state_[i][j] += 0.05f; } last_input_ = 0.0f; } bool ModulePZFC::SetPZBankCoeffsERBFitted() { float parameter_values[3 * 7] = { // Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec 1.14827, 0.00000, 0.00000, // % SumSqrErr= 10125.41 0.53571, -0.70128, 0.63246, // % RMSErr = 2.81586 0.76779, 0.00000, 0.00000, // % MeanErr = 0.00000 // Inf 0.00000 0.00000 % RMSCost = NaN 0.00000, 0.00000, 0.00000, 6.00000, 0.00000, 0.00000, 1.08869, -0.09470, 0.07844, 10.56432, 2.52732, 1.86895 // -3.45865 -1.31457 3.91779 % Kv }; // Precalculate the number of channels required - this method is ugly but it // was the quickest way of converting from MATLAB as the step factor between // channels can vary quadratically with pole frequency... // Normalised maximum pole frequency float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); channel_count_ = 0; while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) { float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; float f_dep = ERBTools::Freq2ERB(frequency) / ERBTools::Freq2ERB(1000.0f) - 1.0f; float bw = ERBTools::Freq2ERBw(pole_frequency / (2.0f * M_PI) * sample_rate_); float step_factor = 1.0f / (parameter_values[4*3] + parameter_values[4 * 3 + 1] * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep); // 1/n2 pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_); channel_count_++; } // Now the number of channels is known, various buffers for the filterbank // coefficients can be initialised pole_dampings_.clear(); pole_dampings_.resize(channel_count_, 0.0f); pole_frequencies_.clear(); pole_frequencies_.resize(channel_count_, 0.0f); // Direct-form coefficients za0_.clear(); za0_.resize(channel_count_, 0.0f); za1_.clear(); za1_.resize(channel_count_, 0.0f); za2_.clear(); za2_.resize(channel_count_, 0.0f); // The output signal bank output_.Initialize(channel_count_, buffer_length_, sample_rate_); // Reset the pole frequency to maximum pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); for (int i = channel_count_ - 1; i > -1; --i) { // Store the normalised pole frequncy pole_frequencies_[i] = pole_frequency; // Calculate the real pole frequency from the normalised pole frequency float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; // Store the real pole frequency as the 'centre frequency' of the filterbank // channel output_.set_centre_frequency(i, frequency); // From PZFC_Small_Signal_Params.m { From PZFC_Params.m { float DpndF = ERBTools::Freq2ERB(frequency) / ERBTools::Freq2ERB(1000.0f) - 1.0f; float p[8]; // Parameters (short name for ease of reading) // Use parameter_values to recover the parameter values for this frequency for (int param = 0; param < 7; ++param) p[param] = parameter_values[param * 3] + parameter_values[param * 3 + 1] * DpndF + parameter_values[param * 3 + 2] * DpndF * DpndF; // Calculate the final parameter p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f); if (p[7] < 0.2f) p[7] = 0.2f; // Nominal bandwidth at this frequency float fERBw = ERBTools::Freq2ERBw(frequency); // Pole bandwidth float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2) * pow(p[4], 0.5f); // Pole damping float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2)); // Store the pole damping pole_dampings_[i] = pole_damping; // Zero bandwidth float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2) * pow(p[4], 0.5f); // Zero frequency float zero_frequency = p[5] * pole_frequency; if (zero_frequency > M_PI) LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency " "in ModulePZFC(), continuing anyway but results may not " "be accurate.")); // Zero damping float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2)); // Impulse-invariance mapping float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2)); float fZRho = exp(-fZDamp * zero_frequency); // Direct-form coefficients float fA1 = -2.0f * fZRho * cos(fZTheta); float fA2 = fZRho * fZRho; // Normalised to unity gain at DC float fASum = 1.0f + fA1 + fA2; za0_[i] = 1.0f / fASum; za1_[i] = fA1 / fASum; za2_[i] = fA2 / fASum; // Subtract step factor (1/n2) times current bandwidth from the pole // frequency pole_frequency -= ((1.0f / p[4]) * (fERBw * (2.0f * M_PI) / sample_rate_)); } return true; } bool ModulePZFC::SetPZBankCoeffs() { /*! \todo Re-implement the alternative parameter settings */ if (!SetPZBankCoeffsERBFitted()) return false; /*! \todo Make fMindamp and fMaxdamp user-settable? */ mindamp_ = 0.18f; maxdamp_ = 0.4f; rmin_.resize(channel_count_); rmax_.resize(channel_count_); xmin_.resize(channel_count_); xmax_.resize(channel_count_); for (int c = 0; c < channel_count_; ++c) { // Calculate maximum and minimum damping options rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]); rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]); xmin_[c] = rmin_[c] * cos(pole_frequencies_[c] * pow((1-pow(mindamp_, 2)), 0.5f)); xmax_[c] = rmax_[c] * cos(pole_frequencies_[c] * pow((1-pow(maxdamp_, 2)), 0.5f)); } // Set up AGC parameters agc_stage_count_ = 4; agc_epsilons_.resize(agc_stage_count_); agc_epsilons_[0] = 0.0064f; agc_epsilons_[1] = 0.0016f; agc_epsilons_[2] = 0.0004f; agc_epsilons_[3] = 0.0001f; agc_gains_.resize(agc_stage_count_); agc_gains_[0] = 1.0f; agc_gains_[1] = 1.4f; agc_gains_[2] = 2.0f; agc_gains_[3] = 2.8f; float mean_agc_gain = 0.0f; for (int c = 0; c < agc_stage_count_; ++c) mean_agc_gain += agc_gains_[c]; mean_agc_gain /= static_cast<float>(agc_stage_count_); for (int c = 0; c < agc_stage_count_; ++c) agc_gains_[c] /= mean_agc_gain; return true; } void ModulePZFC::AGCDampStep() { if (detect_.size() == 0) { // If detect_ is not initialised, it means that the AGC is not set up. // Set up now. /*! \todo Make a separate InitAGC function which does this. */ detect_.resize(channel_count_); for (int c = 0; c < channel_count_; ++c) detect_[c] = 1.0f; float fDetectZero = DetectFun(0.0f); for (int c = 0; c < channel_count_; c++) detect_[c] *= fDetectZero; for (int c = 0; c < channel_count_; c++) for (int st = 0; st < agc_stage_count_; st++) agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]); } float fAGCEpsLeft = 0.3f; float fAGCEpsRight = 0.3f; for (int c = channel_count_ - 1; c > -1; --c) { for (int st = 0; st < agc_stage_count_; ++st) { // This bounds checking is ugly and wasteful, and in an inner loop. // If this algorithm is slow, this is why! /*! \todo Proper non-ugly bounds checking in AGCDampStep() */ float fPrevAGCState; float fCurrAGCState; float fNextAGCState; if (c < channel_count_ - 1) fPrevAGCState = agc_state_[c + 1][st]; else fPrevAGCState = agc_state_[c][st]; fCurrAGCState = agc_state_[c][st]; if (c > 0) fNextAGCState = agc_state_[c - 1][st]; else fNextAGCState = agc_state_[c][st]; // Spatial smoothing /*! \todo Something odd is going on here * I think this line is not quite right. */ float agc_avg = fAGCEpsLeft * fPrevAGCState + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState + fAGCEpsRight * fNextAGCState; // Temporal smoothing agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st]) + agc_epsilons_[st] * detect_[c] * agc_gains_[st]; } } float fOffset = 1.0f - agc_factor_ * DetectFun(0.0f); for (int i = 0; i < channel_count_; ++i) { float fAGCStateMean = 0.0f; for (int j = 0; j < agc_stage_count_; ++j) fAGCStateMean += agc_state_[i][j]; fAGCStateMean /= static_cast<float>(agc_stage_count_); pole_damps_mod_[i] = pole_dampings_[i] * (fOffset + agc_factor_ * fAGCStateMean); } } float ModulePZFC::DetectFun(float fIN) { if (fIN < 0.0f) fIN = 0.0f; float fDetect = Minimum(1.0f, fIN); float fA = 0.25f; return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f); } inline float ModulePZFC::Minimum(float a, float b) { if (a < b) return a; else return b; } void ModulePZFC::Process(const SignalBank& input) { // Set the start time of the output buffer output_.set_start_time(input.start_time()); for (int iSample = 0; iSample < input.buffer_length(); ++iSample) { float fInput = input[0][iSample]; // Lowpass filter the input with a zero at PI fInput = 0.5f * fInput + 0.5f * last_input_; last_input_ = input[0][iSample]; inputs_[channel_count_ - 1] = fInput; for (int c = 0; c < channel_count_ - 1; ++c) inputs_[c] = previous_out_[c + 1]; // PZBankStep2 // to save a bunch of divides float damp_rate = 1.0f / (maxdamp_ - mindamp_); for (int c = channel_count_ - 1; c > -1; --c) { float interp_factor = (pole_damps_mod_[c] - mindamp_) * damp_rate; float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor; float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor; // optional improvement to constellation adds a bit to r float fd = pole_frequencies_[c] * pole_damps_mod_[c]; // quadratic for small values, then linear r = r + 0.25f * fd * Minimum(0.05f, fd); float zb1 = -2.0f * x; float zb2 = r * r; /* canonic poles but with input provided where unity DC gain is assured * (mean value of state is always equal to mean value of input) */ float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1 - (state_2_[c] - inputs_[c]) * zb2; // canonic zeros part as before: float output = za0_[c] * new_state + za1_[c] * state_1_[c] + za2_[c] * state_2_[c]; // cubic compression nonlinearity output = output - 0.0001f * pow(output, 3); output_.set_sample(c, iSample, output); detect_[c] = DetectFun(output); state_2_[c] = state_1_[c]; state_1_[c] = new_state; } if (do_agc_step_) AGCDampStep(); for (int c = 0; c < channel_count_; ++c) previous_out_[c] = output_[c][iSample]; } PushOutput(); } } // namespace aimc