Mercurial > hg > aimc
view trunk/matlab/bmm/carfac/SAI_RunLayered.m @ 704:e9855b95cd04
Small cleanup of eigen usage in SAI implementation.
author | ronw@google.com |
---|---|
date | Tue, 16 Jul 2013 19:56:11 +0000 |
parents | be55786eeb04 |
children |
line wrap: on
line source
% Copyright 2013, Google, Inc. % Author: Richard F. Lyon % % This Matlab file is part of an implementation of Lyon's cochlear model: % "Cascade of Asymmetric Resonators with Fast-Acting Compression" % to supplement Lyon's upcoming book "Human and Machine Hearing" % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [frame_rate, num_frames] = SAI_RunLayered(CF, input_waves) % function [CF, SAI_movie] = CARFAC_RunLayered(CF, input_waves) % This function runs the CARFAC and generates an SAI movie, dumped as PNG % files for now. % % Computes a "layered" SAI composed of images computed at several % time scales. % % Layer 1 is not decimated from the 22050 rate; subsequent layers have % smoothing and 2X decimation each. All layers get composited together % into movie frames. n_ch = CF.n_ch; [n_samp, n_ears] = size(input_waves); if n_ears ~= CF.n_ears error('bad number of input_waves channels passed to CARFAC_Run') end fs = CF.fs; seglen = round(fs / 30); % Pick about 30 fps frame_rate = fs / seglen; n_segs = ceil(n_samp / seglen); % Design the composite log-lag SAI using these parameters and defaults. n_layers = 15 width_per_layer = 36; [layer_array, total_width, lags] = ... SAI_DesignLayers(n_layers, width_per_layer, seglen); % Find where in the lag curve corresponds to the piano black keys: pitches = fs ./ lags; key_indices = []; df = log(2)/width_per_layer; for f = [BlackKeyFrequencies, 8, 4, 2, 1-df, 1, 1+df, 0.5, 0.25, 0.125, ... -2000, -1000, -500, -250, -125]; % Augment with beat. [dist, index] = min((f - pitches).^2); key_indices = [key_indices, index]; end piano = zeros(1, total_width); piano(key_indices) = 1; piano = [piano; piano; piano]; % Make the composite SAI image array. composite_frame = zeros(n_ch, total_width); % Make the history buffers in the layers_array: for layer = 1:n_layers layer_array(layer).nap_buffer = zeros(layer_array(layer).buffer_width, n_ch); layer_array(layer).nap_fraction = 0; % leftover fraction to shift in. % The SAI frame is transposed to be image-like. layer_array(layer).frame = zeros(n_ch, layer_array(layer).frame_width); end n_marginal_rows = 100; marginals = []; average_composite = 0; future_lags = layer_array(1).future_lags; % marginals_frame = zeros(total_width - future_lags + 2*n_ch, total_width); marginals_frame = zeros(n_ch, total_width); for seg_num = 1:n_segs % seg_range is the range of input sample indices for this segment if seg_num == n_segs % The last segment may be short of seglen, but do it anyway: seg_range = (seglen*(seg_num - 1) + 1):n_samp; else seg_range = seglen*(seg_num - 1) + (1:seglen); end [seg_naps, CF] = CARFAC_Run_Segment(CF, input_waves(seg_range, :)); seg_naps = max(0, seg_naps); % Rectify if seg_num == n_segs % pad out the last result seg_naps = [seg_naps; zeros(seglen - size(seg_naps,1), size(seg_naps, 2))]; end % Shift new data into some or all of the layer buffers: layer_array = SAI_UpdateBuffers(layer_array, seg_naps, seg_num); for layer = n_layers:-1:1 % Stabilize and blend from coarse to fine update_interval = layer_array(layer).update_interval; if 0 == mod(seg_num, update_interval) layer_array(layer) = SAI_StabilizeLayer(layer_array(layer)); composite_frame = SAI_BlendFrameIntoComposite( ... layer_array(layer), composite_frame); end end average_composite = average_composite + ... 0.01 * (composite_frame - average_composite); if isempty(marginals) marginals = zeros(n_marginal_rows, total_width); end for row = n_marginal_rows:-1:11 % smooth from row above (lower number) marginals(row, :) = marginals(row, :) + ... 2^((10 - row)/8) * (1.01*marginals(row - 1, :) - marginals(row, :)); end lag_marginal = mean(composite_frame, 1); % means max out near 1 or 2 lag_marginal = lag_marginal - 0.75*smooth1d(lag_marginal, 30)'; freq_marginal = mean(layer_array(1).nap_buffer); % emphasize local peaks: freq_marginal = freq_marginal - 0.5*smooth1d(freq_marginal, 5)'; % marginals_frame = [marginals_frame(:, 2:end), ... % [lag_marginal(1:(end - future_lags)), freq_marginal(ceil((1:(2*end))/2))]']; marginals_frame = [marginals_frame(:, 2:end), freq_marginal(1:end)']; for row = 10:-1:1 marginals(row, :) = lag_marginal - (10 - row) / 40; end if 0 == mod(seg_num, update_interval) || seg_num == 1 coc_gram = layer_array(end).nap_buffer'; [n_ch, n_width] = size(composite_frame); coc_gram = [coc_gram, zeros(n_ch, n_width - size(coc_gram, 2))]; coc_gram = coc_gram(:, (end-total_width+1):end); end display_frame = [ ... % coc_gram; ... 4 * marginals_frame; ... composite_frame(ceil((1:(2*end))/2), :); ... piano; ... 10*max(0,marginals)]; cmap = jet; cmap = 1 - gray; % jet figure(10) image(32*display_frame); colormap(cmap); drawnow imwrite(32*display_frame, cmap, sprintf('frames/frame%05d.png', seg_num)); end num_frames = seg_num; return function frequencies = BlackKeyFrequencies black_indices = []; for index = 0:87 if any(mod(index, 12) == [1 4 6 9 11]) black_indices = [black_indices, index]; end end frequencies = 27.5 * 2.^(black_indices / 12);