Mercurial > hg > aimc
view trunk/matlab/bmm/carfac/CARFAC_Run.m @ 704:e9855b95cd04
Small cleanup of eigen usage in SAI implementation.
author | ronw@google.com |
---|---|
date | Tue, 16 Jul 2013 19:56:11 +0000 |
parents | 3d749a008b87 |
children |
line wrap: on
line source
% Copyright 2012 Google Inc. All Rights Reserved. % Author Richard F. Lyon % % This Matlab file is part of an implementation of Lyon's cochlear model: % "Cascade of Asymmetric Resonators with Fast-Acting Compression" % to supplement Lyon's upcoming book "Human and Machine Hearing" % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [CF, decim_naps, naps, BM, ohc, agc] = CARFAC_Run ... (CF, input_waves, AGC_plot_fig_num) % function [CF, decim_naps, naps, BM, ohc, agc] = CARFAC_Run ... % (CF, input_waves, AGC_plot_fig_num) % This function runs the CARFAC; that is, filters a 1 or more channel % sound input to make one or more neural activity patterns (naps). % % The CF struct holds the filterbank design and state; if you want to % break the input up into segments, you need to use the updated CF % to keep the state between segments. % % input_waves is a column vector if there's just one audio channel; % more generally, it has a row per time sample, a column per audio channel. % % naps has a row per time sample, a column per filterbank channel, and % a layer per audio channel if more than 1. % decim_naps is like naps but time-decimated by the int CF.decimation. % % the input_waves are assumed to be sampled at the same rate as the % CARFAC is designed for; a resampling may be needed before calling this. % % ohc and agc are optional extra outputs for diagnosing internals. [n_samp, n_ears] = size(input_waves); n_ch = CF.n_ch; if nargin < 3 AGC_plot_fig_num = 0; end if nargout > 3 BM = zeros(n_samp, n_ch, n_ears); else BM = []; end if nargout > 4 ohc = zeros(n_samp, n_ch, n_ears); else ohc = []; end if nargout > 5 agc = zeros(n_samp, n_ch, n_ears); else agc = []; end if n_ears ~= CF.n_ears error('bad number of input_waves channels passed to CARFAC_Run') end naps = zeros(n_samp, n_ch, n_ears); seglen = 441; % anything should work; this is 20 ms at default fs n_segs = ceil(n_samp / seglen); if nargout > 1 % make decimated detect output: decim_naps = zeros(n_segs, CF.n_ch, CF.n_ears); else decim_naps = []; end if nargout > 2 % make decimated detect output: naps = zeros(n_samp, CF.n_ch, CF.n_ears); else naps = []; end for seg_num = 1:n_segs if seg_num == n_segs % The last segement may be short of seglen, but do it anyway: k_range = (seglen*(seg_num - 1) + 1):n_samp; else k_range = seglen*(seg_num - 1) + (1:seglen); end % Process a segment to get a slice of decim_naps, and plot AGC state: if ~isempty(BM) % ask for everything in this case, for laziness: [seg_naps, CF, seg_BM, seg_ohc, seg_agc] = CARFAC_Run_Segment(CF, input_waves(k_range, :)); else [seg_naps, CF] = CARFAC_Run_Segment(CF, input_waves(k_range, :)); end if ~isempty(BM) for ear = 1:n_ears % Accumulate segment BM to make full BM BM(k_range, :, ear) = seg_BM(:, :, ear); end end if ~isempty(naps) for ear = 1:n_ears % Accumulate segment naps to make full naps naps(k_range, :, ear) = seg_naps(:, :, ear); end end if ~isempty(ohc) for ear = 1:n_ears % Accumulate segment naps to make full naps ohc(k_range, :, ear) = seg_ohc(:, :, ear); end end if ~isempty(agc) for ear = 1:n_ears % Accumulate segment naps to make full naps agc(k_range, :, ear) = seg_agc(:, :, ear); end end if ~isempty(decim_naps) for ear = 1:n_ears decim_naps(seg_num, :, ear) = CF.ears(ear).IHC_state.ihc_accum / seglen; CF.ears(ear).IHC_state.ihc_accum = zeros(n_ch,1); end end if AGC_plot_fig_num figure(AGC_plot_fig_num); hold off; clf maxmax = 0; for ear = 1:n_ears hold on for stage = 1:4; stage_response = 2^(stage-1) * CF.ears(ear).AGC_state(stage).AGC_memory; plot(stage_response); maxmax = max(maxmax, max(stage_response)); end end axis([0, CF.n_ch+1, 0.0, maxmax * 1.01 + 0.002]); drawnow end end