Mercurial > hg > aimc
view trunk/matlab/bmm/carfac/CARFAC_Design.m @ 704:e9855b95cd04
Small cleanup of eigen usage in SAI implementation.
author | ronw@google.com |
---|---|
date | Tue, 16 Jul 2013 19:56:11 +0000 |
parents | 2341bb90adb8 |
children |
line wrap: on
line source
% Copyright 2012 Google Inc. All Rights Reserved. % Author: Richard F. Lyon % % This Matlab file is part of an implementation of Lyon's cochlear model: % "Cascade of Asymmetric Resonators with Fast-Acting Compression" % to supplement Lyon's upcoming book "Human and Machine Hearing" % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function CF = CARFAC_Design(n_ears, fs, ... CF_CAR_params, CF_AGC_params, CF_IHC_params) % function CF = CARFAC_Design(n_ears, fs, ... % CF_CAR_params, CF_AGC_params, CF_IHC_params) % % This function designs the CARFAC (Cascade of Asymmetric Resonators with % Fast-Acting Compression); that is, it take bundles of parameters and % computes all the filter coefficients needed to run it. % % fs is sample rate (per second) % CF_CAR_params bundles all the pole-zero filter cascade parameters % CF_AGC_params bundles all the automatic gain control parameters % CF_IHC_params bundles all the inner hair cell parameters % % See other functions for designing and characterizing the CARFAC: % [naps, CF] = CARFAC_Run(CF, input_waves) % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels) % % Defaults to Glasberg & Moore's ERB curve: % ERB_break_freq = 1000/4.37; % 228.833 % ERB_Q = 1000/(24.7*4.37); % 9.2645 % % All args are defaultable; for sample/default args see the code; they % make 96 channels at default fs = 22050, 114 channels at 44100. if nargin < 1 n_ears = 1; % if more than 1, make them identical channels; % then modify the design if necessary for different reasons end if nargin < 2 fs = 22050; end if nargin < 3 CF_CAR_params = struct( ... 'velocity_scale', 0.1, ... % for the velocity nonlinearity 'v_offset', 0.04, ... % offset gives a quadratic part 'min_zeta', 0.10, ... % minimum damping factor in mid-freq channels 'max_zeta', 0.35, ... % maximum damping factor in mid-freq channels 'first_pole_theta', 0.85*pi, ... 'zero_ratio', sqrt(2), ... % how far zero is above pole 'high_f_damping_compression', 0.5, ... % 0 to 1 to compress zeta 'ERB_per_step', 0.5, ... % assume G&M's ERB formula 'min_pole_Hz', 30, ... 'ERB_break_freq', 165.3, ... % Greenwood map's break freq. 'ERB_Q', 1000/(24.7*4.37)); % Glasberg and Moore's high-cf ratio end if nargin < 4 CF_AGC_params = struct( ... 'n_stages', 4, ... 'time_constants', 0.002 * 4.^(0:3), ... 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage 'decimation', [8, 2, 2, 2], ... % how often to update the AGC states 'AGC1_scales', 1.0 * sqrt(2).^(0:3), ... % in units of channels 'AGC2_scales', 1.65 * sqrt(2).^(0:3), ... % spread more toward base 'AGC_mix_coeff', 0.5); end if nargin < 5 % HACK: these constant control the defaults one_cap = 1; % bool; 1 for Allen model, as text states we use just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR if just_hwr CF_IHC_params = struct('just_hwr', 1, ... % just a simple HWR 'ac_corner_Hz', 20); else if one_cap CF_IHC_params = struct( ... 'just_hwr', just_hwr, ... % not just a simple HWR 'one_cap', one_cap, ... % bool; 0 for new two-cap hack 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice 'tau_out', 0.0005, ... % depletion tau is pretty fast 'tau_in', 0.010, ... % recovery tau is slower 'ac_corner_Hz', 20); else CF_IHC_params = struct( ... 'just_hwr', just_hwr, ... % not just a simple HWR 'one_cap', one_cap, ... % bool; 0 for new two-cap hack 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice 'tau1_out', 0.010, ... % depletion tau is pretty fast 'tau1_in', 0.020, ... % recovery tau is slower 'tau2_out', 0.0025, ... % depletion tau is pretty fast 'tau2_in', 0.005, ... % recovery tau is slower 'ac_corner_Hz', 20); end end end % first figure out how many filter stages (PZFC/CARFAC channels): pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi); n_ch = 0; while pole_Hz > CF_CAR_params.min_pole_Hz n_ch = n_ch + 1; pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ... ERB_Hz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q); end % Now we have n_ch, the number of channels, so can make the array % and compute all the frequencies again to put into it: pole_freqs = zeros(n_ch, 1); pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi); for ch = 1:n_ch pole_freqs(ch) = pole_Hz; pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ... ERB_Hz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q); end % Now we have n_ch, the number of channels, and pole_freqs array. max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2)); % Convert to include an ear_array, each w coeffs and state... CAR_coeffs = CARFAC_DesignFilters(CF_CAR_params, fs, pole_freqs); AGC_coeffs = CARFAC_DesignAGC(CF_AGC_params, fs, n_ch); IHC_coeffs = CARFAC_DesignIHC(CF_IHC_params, fs, n_ch); % Copy same designed coeffs into each ear (can do differently in the % future). for ear = 1:n_ears ears(ear).CAR_coeffs = CAR_coeffs; ears(ear).AGC_coeffs = AGC_coeffs; ears(ear).IHC_coeffs = IHC_coeffs; end CF = struct( ... 'fs', fs, ... 'max_channels_per_octave', max_channels_per_octave, ... 'CAR_params', CF_CAR_params, ... 'AGC_params', CF_AGC_params, ... 'IHC_params', CF_IHC_params, ... 'n_ch', n_ch, ... 'pole_freqs', pole_freqs, ... 'ears', ears, ... 'n_ears', n_ears ); %% Design the filter coeffs: function CAR_coeffs = CARFAC_DesignFilters(CAR_params, fs, pole_freqs) n_ch = length(pole_freqs); % the filter design coeffs: % scalars first: CAR_coeffs = struct( ... 'n_ch', n_ch, ... 'velocity_scale', CAR_params.velocity_scale, ... 'v_offset', CAR_params.v_offset ... ); % don't really need these zero arrays, but it's a clue to what fields % and types are need in ohter language implementations: CAR_coeffs.r1_coeffs = zeros(n_ch, 1); CAR_coeffs.a0_coeffs = zeros(n_ch, 1); CAR_coeffs.c0_coeffs = zeros(n_ch, 1); CAR_coeffs.h_coeffs = zeros(n_ch, 1); CAR_coeffs.g0_coeffs = zeros(n_ch, 1); % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a), % and that a is here 1 / (1+f) where h = f*c. % solve for f: 1/zero_ratio^2 = 1 / (1+f) % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1 f = CAR_params.zero_ratio^2 - 1; % nominally 1 for half-octave % Make pole positions, s and c coeffs, h and g coeffs, etc., % which mostly depend on the pole angle theta: theta = pole_freqs .* (2 * pi / fs); c0 = sin(theta); a0 = cos(theta); % different possible interpretations for min-damping r: % r = exp(-theta * CF_CAR_params.min_zeta). % Compress theta to give somewhat higher Q at highest thetas: ff = CAR_params.high_f_damping_compression; % 0 to 1; typ. 0.5 x = theta/pi; zr_coeffs = pi * (x - ff * x.^3); % when ff is 0, this is just theta, % and when ff is 1 it goes to zero at theta = pi. max_zeta = CAR_params.max_zeta; CAR_coeffs.r1_coeffs = (1 - zr_coeffs .* max_zeta); % "r1" for the max-damping condition min_zeta = CAR_params.min_zeta; % Increase the min damping where channels are spaced out more, by pulling % 25% of the way toward ERB_Hz/pole_freqs (close to 0.1 at high f) min_zetas = min_zeta + 0.25*(ERB_Hz(pole_freqs, ... CAR_params.ERB_break_freq, CAR_params.ERB_Q) ./ pole_freqs - min_zeta); CAR_coeffs.zr_coeffs = zr_coeffs .* ... (max_zeta - min_zetas); % how r relates to undamping % undamped coupled-form coefficients: CAR_coeffs.a0_coeffs = a0; CAR_coeffs.c0_coeffs = c0; % the zeros follow via the h_coeffs h = c0 .* f; CAR_coeffs.h_coeffs = h; % for unity gain at min damping, radius r; only used in CARFAC_Init: relative_undamping = ones(n_ch, 1); % max undamping to start % this function needs to take CAR_coeffs even if we haven't finished % constucting it by putting in the g0_coeffs: CAR_coeffs.g0_coeffs = CARFAC_Stage_g(CAR_coeffs, relative_undamping); %% the AGC design coeffs: function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs, n_ch) n_AGC_stages = AGC_params.n_stages; % AGC1 pass is smoothing from base toward apex; % AGC2 pass is back, which is done first now (in double exp. version) AGC1_scales = AGC_params.AGC1_scales; AGC2_scales = AGC_params.AGC2_scales; decim = 1; total_DC_gain = 0; %% % Convert to vector of AGC coeffs AGC_coeffs = struct([]); for stage = 1:n_AGC_stages AGC_coeffs(stage).n_ch = n_ch; AGC_coeffs(stage).n_AGC_stages = n_AGC_stages; AGC_coeffs(stage).AGC_stage_gain = AGC_params.AGC_stage_gain; AGC_coeffs(stage).decimation = AGC_params.decimation(stage); tau = AGC_params.time_constants(stage); % time constant in seconds decim = decim * AGC_params.decimation(stage); % net decim to this stage % epsilon is how much new input to take at each update step: AGC_coeffs(stage).AGC_epsilon = 1 - exp(-decim / (tau * fs)); % effective number of smoothings in a time constant: ntimes = tau * (fs / decim); % typically 5 to 50 % decide on target spread (variance) and delay (mean) of impulse % response as a distribution to be convolved ntimes: % TODO (dicklyon): specify spread and delay instead of scales??? delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes; spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes; % get pole positions to better match intended spread and delay of % [[geometric distribution]] in each direction (see wikipedia) u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking. p = u - sqrt(u^2 - 1); % pole that would give spread if used twice. dp = delay * (1 - 2*p +p^2)/2; polez1 = p - dp; polez2 = p + dp; AGC_coeffs(stage).AGC_polez1 = polez1; AGC_coeffs(stage).AGC_polez2 = polez2; % try a 3- or 5-tap FIR as an alternative to the double exponential: n_taps = 0; FIR_OK = 0; n_iterations = 1; while ~FIR_OK switch n_taps case 0 % first attempt a 3-point FIR to apply once: n_taps = 3; case 3 % second time through, go wider but stick to 1 iteration n_taps = 5; case 5 % apply FIR multiple times instead of going wider: n_iterations = n_iterations + 1; if n_iterations > 16 error('Too many n_iterations in CARFAC_DesignAGC'); end otherwise % to do other n_taps would need changes in CARFAC_Spatial_Smooth % and in Design_FIR_coeffs error('Bad n_taps in CARFAC_DesignAGC'); end [AGC_spatial_FIR, FIR_OK] = Design_FIR_coeffs( ... n_taps, spread_sq, delay, n_iterations); end % when FIR_OK, store the resulting FIR design in coeffs: AGC_coeffs(stage).AGC_spatial_iterations = n_iterations; AGC_coeffs(stage).AGC_spatial_FIR = AGC_spatial_FIR; AGC_coeffs(stage).AGC_spatial_n_taps = n_taps; % accumulate DC gains from all the stages, accounting for stage_gain: total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1); % TODO (dicklyon) -- is this the best binaural mixing plan? if stage == 1 AGC_coeffs(stage).AGC_mix_coeffs = 0; else AGC_coeffs(stage).AGC_mix_coeffs = AGC_params.AGC_mix_coeff / ... (tau * (fs / decim)); end end % adjust stage 1 detect_scale to be the reciprocal DC gain of the AGC filters: AGC_coeffs(1).detect_scale = 1 / total_DC_gain; %% function [FIR, OK] = Design_FIR_coeffs(n_taps, delay_variance, ... mean_delay, n_iter) % function [FIR, OK] = Design_FIR_coeffs(n_taps, delay_variance, ... % mean_delay, n_iter) % The smoothing function is a space-domain smoothing, but it considered % here by analogy to time-domain smoothing, which is why its potential % off-centeredness is called a delay. Since it's a smoothing filter, it is % also analogous to a discrete probability distribution (a p.m.f.), with % mean corresponding to delay and variance corresponding to squared spatial % spread (in samples, or channels, and the square thereof, respecitively). % Here we design a filter implementation's coefficient via the method of % moment matching, so we get the intended delay and spread, and don't worry % too much about the shape of the distribution, which will be some kind of % blob not too far from Gaussian if we run several FIR iterations. % reduce mean and variance of smoothing distribution by n_iterations: mean_delay = mean_delay / n_iter; delay_variance = delay_variance / n_iter; switch n_taps case 3 % based on solving to match mean and variance of [a, 1-a-b, b]: a = (delay_variance + mean_delay*mean_delay - mean_delay) / 2; b = (delay_variance + mean_delay*mean_delay + mean_delay) / 2; FIR = [a, 1 - a - b, b]; OK = FIR(2) >= 0.2; case 5 % based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]: a = ((delay_variance + mean_delay*mean_delay)*2/5 - mean_delay*2/3) / 2; b = ((delay_variance + mean_delay*mean_delay)*2/5 + mean_delay*2/3) / 2; % first and last coeffs are implicitly duplicated to make 5-point FIR: FIR = [a/2, 1 - a - b, b/2]; OK = FIR(2) >= 0.1; otherwise error('Bad n_taps in AGC_spatial_FIR'); end %% the IHC design coeffs: function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs, n_ch) if IHC_params.just_hwr IHC_coeffs = struct( ... 'n_ch', n_ch, ... 'just_hwr', 1); else if IHC_params.one_cap ro = 1 / CARFAC_Detect(10); % output resistance at a very high level c = IHC_params.tau_out / ro; ri = IHC_params.tau_in / c; % to get steady-state average, double ro for 50% duty cycle saturation_output = 1 / (2*ro + ri); % also consider the zero-signal equilibrium: r0 = 1 / CARFAC_Detect(0); current = 1 / (ri + r0); cap_voltage = 1 - current * ri; IHC_coeffs = struct( ... 'n_ch', n_ch, ... 'just_hwr', 0, ... 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ... 'out_rate', ro / (IHC_params.tau_out * fs), ... 'in_rate', 1 / (IHC_params.tau_in * fs), ... 'one_cap', IHC_params.one_cap, ... 'output_gain', 1/ (saturation_output - current), ... 'rest_output', current / (saturation_output - current), ... 'rest_cap', cap_voltage); % one-channel state for testing/verification: IHC_state = struct( ... 'cap_voltage', IHC_coeffs.rest_cap, ... 'lpf1_state', 0, ... 'lpf2_state', 0, ... 'ihc_accum', 0); else ro = 1 / CARFAC_Detect(10); % output resistance at a very high level c2 = IHC_params.tau2_out / ro; r2 = IHC_params.tau2_in / c2; c1 = IHC_params.tau1_out / r2; r1 = IHC_params.tau1_in / c1; % to get steady-state average, double ro for 50% duty cycle saturation_output = 1 / (2*ro + r2 + r1); % also consider the zero-signal equilibrium: r0 = 1 / CARFAC_Detect(0); current = 1 / (r1 + r2 + r0); cap1_voltage = 1 - current * r1; cap2_voltage = cap1_voltage - current * r2; IHC_coeffs = struct(... 'n_ch', n_ch, ... 'just_hwr', 0, ... 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ... 'out1_rate', 1 / (IHC_params.tau1_out * fs), ... 'in1_rate', 1 / (IHC_params.tau1_in * fs), ... 'out2_rate', ro / (IHC_params.tau2_out * fs), ... 'in2_rate', 1 / (IHC_params.tau2_in * fs), ... 'one_cap', IHC_params.one_cap, ... 'output_gain', 1/ (saturation_output - current), ... 'rest_output', current / (saturation_output - current), ... 'rest_cap2', cap2_voltage, ... 'rest_cap1', cap1_voltage); % one-channel state for testing/verification: IHC_state = struct( ... 'cap1_voltage', IHC_coeffs.rest_cap1, ... 'cap2_voltage', IHC_coeffs.rest_cap2, ... 'lpf1_state', 0, ... 'lpf2_state', 0, ... 'ihc_accum', 0); end end % one more late addition that applies to all cases: IHC_coeffs.ac_coeff = 2 * pi * IHC_params.ac_corner_Hz / fs; %% % default design result, running this function with no args, should look % like this, before CARFAC_Init puts state storage into it: % % CF = CARFAC_Design % CAR_params = CF.CAR_params % AGC_params = CF.AGC_params % IHC_params = CF.IHC_params % CAR_coeffs = CF.ears(1).CAR_coeffs % AGC_coeffs = CF.ears(1).AGC_coeffs % AGC_coeffs(1) % AGC_coeffs(2) % AGC_coeffs(3) % AGC_coeffs(4) % IHC_coeffs = CF.ears(1).IHC_coeffs % CF = % fs: 22050 % max_channels_per_octave: 12.2709 % CAR_params: [1x1 struct] % AGC_params: [1x1 struct] % IHC_params: [1x1 struct] % n_ch: 71 % pole_freqs: [71x1 double] % ears: [1x1 struct] % n_ears: 1 % CAR_params = % velocity_scale: 0.1000 % v_offset: 0.0400 % min_zeta: 0.1000 % max_zeta: 0.3500 % first_pole_theta: 2.6704 % zero_ratio: 1.4142 % high_f_damping_compression: 0.5000 % ERB_per_step: 0.5000 % min_pole_Hz: 30 % ERB_break_freq: 165.3000 % ERB_Q: 9.2645 % AGC_params = % n_stages: 4 % time_constants: [0.0020 0.0080 0.0320 0.1280] % AGC_stage_gain: 2 % decimation: [8 2 2 2] % AGC1_scales: [1 1.4142 2.0000 2.8284] % AGC2_scales: [1.6500 2.3335 3.3000 4.6669] % AGC_mix_coeff: 0.5000 % IHC_params = % just_hwr: 0 % one_cap: 1 % tau_lpf: 8.0000e-05 % tau_out: 5.0000e-04 % tau_in: 0.0100 % ac_corner_Hz: 20 % CAR_coeffs = % n_ch: 71 % velocity_scale: 0.1000 % v_offset: 0.0400 % r1_coeffs: [71x1 double] % a0_coeffs: [71x1 double] % c0_coeffs: [71x1 double] % h_coeffs: [71x1 double] % g0_coeffs: [71x1 double] % zr_coeffs: [71x1 double] % AGC_coeffs = % 1x4 struct array with fields: % n_ch % n_AGC_stages % AGC_stage_gain % decimation % AGC_epsilon % AGC_polez1 % AGC_polez2 % AGC_spatial_iterations % AGC_spatial_FIR % AGC_spatial_n_taps % AGC_mix_coeffs % detect_scale % ans = % n_ch: 71 % n_AGC_stages: 4 % AGC_stage_gain: 2 % decimation: 8 % AGC_epsilon: 0.1659 % AGC_polez1: 0.1737 % AGC_polez2: 0.2472 % AGC_spatial_iterations: 1 % AGC_spatial_FIR: [0.2856 0.3108 0.4036] % AGC_spatial_n_taps: 3 % AGC_mix_coeffs: 0 % detect_scale: 0.0667 % ans = % n_ch: 71 % n_AGC_stages: 4 % AGC_stage_gain: 2 % decimation: 2 % AGC_epsilon: 0.0867 % AGC_polez1: 0.1845 % AGC_polez2: 0.2365 % AGC_spatial_iterations: 1 % AGC_spatial_FIR: [0.2994 0.3178 0.3828] % AGC_spatial_n_taps: 3 % AGC_mix_coeffs: 0.0454 % detect_scale: [] % ans = % n_ch: 71 % n_AGC_stages: 4 % AGC_stage_gain: 2 % decimation: 2 % AGC_epsilon: 0.0443 % AGC_polez1: 0.1921 % AGC_polez2: 0.2288 % AGC_spatial_iterations: 1 % AGC_spatial_FIR: [0.3099 0.3212 0.3689] % AGC_spatial_n_taps: 3 % AGC_mix_coeffs: 0.0227 % detect_scale: [] % ans = % n_ch: 71 % n_AGC_stages: 4 % AGC_stage_gain: 2 % decimation: 2 % AGC_epsilon: 0.0224 % AGC_polez1: 0.1975 % AGC_polez2: 0.2235 % AGC_spatial_iterations: 1 % AGC_spatial_FIR: [0.3177 0.3230 0.3594] % AGC_spatial_n_taps: 3 % AGC_mix_coeffs: 0.0113 % detect_scale: [] % IHC_coeffs = % n_ch: 71 % just_hwr: 0 % lpf_coeff: 0.4327 % out_rate: 0.0996 % in_rate: 0.0045 % one_cap: 1 % output_gain: 49.3584 % rest_output: 1.0426 % rest_cap: 0.5360 % ac_coeff: 0.0057