view src/Modules/Strobes/ModuleParabola.cc @ 10:d54efba7f09b

- Updated contact details and copyright lines to reflect actual copyright ownership (the University of Cambridge's intellectual property policy says that students own the copyright on stuff they write unless there is a funding agreement saying otherwise)
author tomwalters
date Fri, 19 Feb 2010 09:11:23 +0000
parents 1a1988ec40e7
children bd370910aa05
line wrap: on
line source
// Copyright 2007-2010, Thomas Walters
//
// AIM-C: A C++ implementation of the Auditory Image Model
// http://www.acousticscale.org/AIMC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

/*!
 * \file
 * \brief Parabola strobe detection module - Using the 'parabloa' strobe
 * criterion from the AIM-MAT sf2003 module
 *
 * \author Tom Walters <tcw24@cam.ac.uk>
 * \date created 2007/08/01
 * \version \$Id:$
 */

#include <math.h>

#include "Modules/Strobes/ModuleParabola.h"

namespace aimc {
ModuleParabola::ModuleParabola(Parameters *params) : Module(params) {
  module_description_ = "sf2003 parabola algorithm";
  module_identifier_ = "parabola";
  module_type_ = "strobes";
  module_version_ = "$Id$";

  // Get data from parameters
  height_ = parameters_->DefaultFloat("parabola.height", 1.2f);
  parabw_ = parameters_->DefaultFloat("parabola.width_cycles", 1.5f);
  strobe_decay_time_ = parameters_->DefaultFloat("parabla.strobe_decay_time",
                                                 0.02f);
  max_strobes_ = parameters_->DefaultInt("parabola.max_strobes", 50);
  channel_count_ = 0;
}

bool ModuleParabola::InitializeInternal(const SignalBank &input) {
  output_.Initialize(input);
  channel_count_ = input.channel_count();
  sample_rate_ = input.sample_rate();

  // Parameters for the parabola
  parab_a_.resize(channel_count_);
  parab_b_.resize(channel_count_);
  parab_wnull_.resize(channel_count_);
  parab_var_samples_.resize(channel_count_);

  for (int ch = 0; ch < channel_count_; ++ch) {
    parab_wnull_[ch] = parabw_ / input.centre_frequency(ch);
    parab_var_samples_[ch] = floor(parab_wnull_[ch] * sample_rate_);
    parab_a_[ch] = 4.0f * (1.0f - height_)
                   / (parab_wnull_[ch] * parab_wnull_[ch]);
    parab_b_[ch] = -parab_wnull_[ch] / 2.0f;
  }

  // Number of samples over which the threshold should decay
  strobe_decay_samples_ = floor(sample_rate_ * strobe_decay_time_);

  // Prepare internal buffers
  ResetInternal();

  return true;
}

void ModuleParabola::ResetInternal() {
  threshold_.resize(channel_count_, 0.0f);
  last_threshold_.resize(channel_count_, 0.0f);
  samples_since_last_strobe_.resize(channel_count_, 0);

  prev_sample_.resize(channel_count_, 10000.0f);
  curr_sample_.resize(channel_count_, 5000.0f);
  next_sample_.resize(channel_count_, 0.0f);
}

void ModuleParabola::Process(const SignalBank &input) {
  float decay_constant;

  for (int ch = 0; ch < output_.channel_count(); ch++) {
    output_.ResetStrobes(ch);
  }
  output_.set_start_time(input.start_time());

  // Loop across samples first, then channels
  for (int i = 0; i < input.buffer_length(); i++) {
    // Find strobes in each channel first
    for (int ch = 0; ch < input.channel_count(); ++ch) {
      // Shift all the samples by one
      // curr_sample is the sample at time (i - 1)
      prev_sample_[ch] = curr_sample_[ch];
      curr_sample_[ch] = next_sample_[ch];
      next_sample_[ch] = input.sample(ch, i);

      // Copy input signal to output signal
      output_.set_sample(ch, i, input.sample(ch, i));

      if (curr_sample_[ch] >= threshold_[ch]) {
        threshold_[ch] = curr_sample_[ch];
        if (prev_sample_[ch] < curr_sample_[ch]
            && next_sample_[ch] < curr_sample_[ch]) {
          // We have a strobe: set threshold and add strobe to the list
          output_.AddStrobe(ch, i - 1);
          last_threshold_[ch] = threshold_[ch];
          parab_var_samples_[ch] =
            floor(input.sample_rate()
                  * (parab_wnull_[ch] - (threshold_[ch]
                                         - 2.0f * parab_a_[ch]  *parab_b_[ch])
                                        / (2.0f * parab_a_[ch])));
        }
      }
      if (output_.strobe_count(ch) > 0) {
        samples_since_last_strobe_[ch] = (i - 1)
             - output_.strobe(ch, output_.strobe_count(ch) - 1);
      } else {
        samples_since_last_strobe_[ch] = UINT_MAX;
      }

      if (samples_since_last_strobe_[ch] > parab_var_samples_[ch]) {
        decay_constant = last_threshold_[ch] / strobe_decay_samples_;
        if (threshold_[ch] > decay_constant)
          threshold_[ch] -= decay_constant;
        else
          threshold_[ch] = 0.0f;
      } else {
        threshold_[ch] = last_threshold_[ch]
            * (parab_a_[ch] * pow((samples_since_last_strobe_[ch]
                                   / input.sample_rate() + parab_b_[ch]),
                                  2.0f) + height_);
      }
    }
  }

  PushOutput();
}



ModuleParabola::~ModuleParabola() {
}
}  // namespace aimc