Mercurial > hg > aimc
view src/Modules/BMM/ModulePZFC.cc @ 10:d54efba7f09b
- Updated contact details and copyright lines to reflect actual copyright ownership
(the University of Cambridge's intellectual property policy says that students own the
copyright on stuff they write unless there is a funding agreement saying otherwise)
author | tomwalters |
---|---|
date | Fri, 19 Feb 2010 09:11:23 +0000 |
parents | decdac21cfc2 |
children | 491b1b1d1dc5 |
line wrap: on
line source
// Copyright 2008-2010, Thomas Walters // // AIM-C: A C++ implementation of the Auditory Image Model // http://www.acousticscale.org/AIMC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /*! \file * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C * module by Tom Walters from the AIM-MAT module based on Dick Lyon's code */ /*! \author Thomas Walters <tom@acousticscale.org> * \date created 2008/02/05 * \version \$Id: ModulePZFC.cc 4 2010-02-03 18:44:58Z tcw $ */ #include "Support/ERBTools.h" #include "Modules/BMM/ModulePZFC.h" namespace aimc { ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) { module_identifier_ = "pzfc"; module_type_ = "bmm"; module_description_ = "Pole-Zero Filter Cascade"; module_version_ = "$Id: ModulePZFC.cc 4 2010-02-03 18:44:58Z tcw $"; // Get parameter values, setting default values where necessary // Each parameter is set here only if it has not already been set elsewhere. cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f); cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f); pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f); zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f); zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f); step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f); bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf", 0.11f); min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz", 27.0f); agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f); do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true); detect_.resize(0); } ModulePZFC::~ModulePZFC() { } bool ModulePZFC::InitializeInternal(const SignalBank &input) { // Make local convenience copies of some variables sample_rate_ = input.sample_rate(); buffer_length_ = input.buffer_length(); channel_count_ = 0; // Prepare the coefficients and also the output SignalBank if (!SetPZBankCoeffs()) return false; // The output signal bank should be set up by now. if (!output_.initialized()) return false; // This initialises all buffers which can be modified by Process() ResetInternal(); return true; } void ModulePZFC::ResetInternal() { // These buffers may be actively modified by the algorithm agc_state_.clear(); agc_state_.resize(channel_count_); for (int i = 0; i < channel_count_; ++i) { agc_state_[i].clear(); agc_state_[i].resize(agc_stage_count_, 0.0f); } state_1_.clear(); state_1_.resize(channel_count_, 0.0f); state_2_.clear(); state_2_.resize(channel_count_, 0.0f); previous_out_.clear(); previous_out_.resize(channel_count_, 0.0f); pole_damps_mod_.clear(); pole_damps_mod_.resize(channel_count_, 0.0f); inputs_.clear(); inputs_.resize(channel_count_, 0.0f); // Init AGC AGCDampStep(); // pole_damps_mod_ and agc_state_ are now be initialized // Modify the pole dampings and AGC state slightly from their values in // silence in case the input is abuptly loud. for (int i = 0; i < channel_count_; ++i) { pole_damps_mod_[i] += 0.05f; for (int j = 0; j < agc_stage_count_; ++j) agc_state_[i][j] += 0.05f; } last_input_ = 0.0f; } bool ModulePZFC::SetPZBankCoeffsERBFitted() { float parameter_values[3 * 7] = { // Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec 1.14827, 0.00000, 0.00000, // % SumSqrErr= 10125.41 0.53571, -0.70128, 0.63246, // % RMSErr = 2.81586 0.76779, 0.00000, 0.00000, // % MeanErr = 0.00000 // Inf 0.00000 0.00000 % RMSCost = NaN 0.00000, 0.00000, 0.00000, 6.00000, 0.00000, 0.00000, 1.08869, -0.09470, 0.07844, 10.56432, 2.52732, 1.86895 // -3.45865 -1.31457 3.91779 % Kv }; // Precalculate the number of channels required - this method is ugly but it // was the quickest way of converting from MATLAB as the step factor between // channels can vary quadratically with pole frequency... // Normalised maximum pole frequency float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); channel_count_ = 0; while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) { float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; float f_dep = ERBTools::Freq2ERB(frequency) / ERBTools::Freq2ERB(1000.0f) - 1.0f; float bw = ERBTools::Freq2ERBw(pole_frequency / (2.0f * M_PI) * sample_rate_); float step_factor = 1.0f / (parameter_values[4*3] + parameter_values[4 * 3 + 1] * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep); // 1/n2 pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_); channel_count_++; } // Now the number of channels is known, various buffers for the filterbank // coefficients can be initialised pole_dampings_.clear(); pole_dampings_.resize(channel_count_, 0.0f); pole_frequencies_.clear(); pole_frequencies_.resize(channel_count_, 0.0f); // Direct-form coefficients za0_.clear(); za0_.resize(channel_count_, 0.0f); za1_.clear(); za1_.resize(channel_count_, 0.0f); za2_.clear(); za2_.resize(channel_count_, 0.0f); // The output signal bank output_.Initialize(channel_count_, buffer_length_, sample_rate_); // Reset the pole frequency to maximum pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); for (int i = channel_count_ - 1; i > -1; --i) { // Store the normalised pole frequncy pole_frequencies_[i] = pole_frequency; // Calculate the real pole frequency from the normalised pole frequency float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; // Store the real pole frequency as the 'centre frequency' of the filterbank // channel output_.set_centre_frequency(i, frequency); // From PZFC_Small_Signal_Params.m { From PZFC_Params.m { float DpndF = ERBTools::Freq2ERB(frequency) / ERBTools::Freq2ERB(1000.0f) - 1.0f; float p[8]; // Parameters (short name for ease of reading) // Use parameter_values to recover the parameter values for this frequency for (int param = 0; param < 7; ++param) p[param] = parameter_values[param * 3] + parameter_values[param * 3 + 1] * DpndF + parameter_values[param * 3 + 2] * DpndF * DpndF; // Calculate the final parameter p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f); if (p[7] < 0.2f) p[7] = 0.2f; // Nominal bandwidth at this frequency float fERBw = ERBTools::Freq2ERBw(frequency); // Pole bandwidth float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2) * pow(p[4], 0.5f); // Pole damping float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2)); // Store the pole damping pole_dampings_[i] = pole_damping; // Zero bandwidth float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2) * pow(p[4], 0.5f); // Zero frequency float zero_frequency = p[5] * pole_frequency; if (zero_frequency > M_PI) LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency " "in ModulePZFC(), continuing anyway but results may not " "be accurate.")); // Zero damping float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2)); // Impulse-invariance mapping float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2)); float fZRho = exp(-fZDamp * zero_frequency); // Direct-form coefficients float fA1 = -2.0f * fZRho * cos(fZTheta); float fA2 = fZRho * fZRho; // Normalised to unity gain at DC float fASum = 1.0f + fA1 + fA2; za0_[i] = 1.0f / fASum; za1_[i] = fA1 / fASum; za2_[i] = fA2 / fASum; // Subtract step factor (1/n2) times current bandwidth from the pole // frequency pole_frequency -= ((1.0f / p[4]) * (fERBw * (2.0f * M_PI) / sample_rate_)); } return true; } bool ModulePZFC::SetPZBankCoeffs() { /*! \todo Re-implement the alternative parameter settings */ if (!SetPZBankCoeffsERBFitted()) return false; /*! \todo Make fMindamp and fMaxdamp user-settable? */ mindamp_ = 0.18f; maxdamp_ = 0.4f; rmin_.resize(channel_count_); rmax_.resize(channel_count_); xmin_.resize(channel_count_); xmax_.resize(channel_count_); for (int c = 0; c < channel_count_; ++c) { // Calculate maximum and minimum damping options rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]); rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]); xmin_[c] = rmin_[c] * cos(pole_frequencies_[c] * pow((1-pow(mindamp_, 2)), 0.5f)); xmax_[c] = rmax_[c] * cos(pole_frequencies_[c] * pow((1-pow(maxdamp_, 2)), 0.5f)); } // Set up AGC parameters agc_stage_count_ = 4; agc_epsilons_.resize(agc_stage_count_); agc_epsilons_[0] = 0.0064f; agc_epsilons_[1] = 0.0016f; agc_epsilons_[2] = 0.0004f; agc_epsilons_[3] = 0.0001f; agc_gains_.resize(agc_stage_count_); agc_gains_[0] = 1.0f; agc_gains_[1] = 1.4f; agc_gains_[2] = 2.0f; agc_gains_[3] = 2.8f; float mean_agc_gain = 0.0f; for (int c = 0; c < agc_stage_count_; ++c) mean_agc_gain += agc_gains_[c]; mean_agc_gain /= static_cast<float>(agc_stage_count_); for (int c = 0; c < agc_stage_count_; ++c) agc_gains_[c] /= mean_agc_gain; return true; } void ModulePZFC::AGCDampStep() { if (detect_.size() == 0) { // If detect_ is not initialised, it means that the AGC is not set up. // Set up now. /*! \todo Make a separate InitAGC function which does this. */ detect_.resize(channel_count_); for (int c = 0; c < channel_count_; ++c) detect_[c] = 1.0f; float fDetectZero = DetectFun(0.0f); for (int c = 0; c < channel_count_; c++) detect_[c] *= fDetectZero; for (int c = 0; c < channel_count_; c++) for (int st = 0; st < agc_stage_count_; st++) agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]); } float fAGCEpsLeft = 0.3f; float fAGCEpsRight = 0.3f; for (int c = channel_count_ - 1; c > -1; --c) { for (int st = 0; st < agc_stage_count_; ++st) { // This bounds checking is ugly and wasteful, and in an inner loop. // If this algorithm is slow, this is why! /*! \todo Proper non-ugly bounds checking in AGCDampStep() */ float fPrevAGCState; float fCurrAGCState; float fNextAGCState; if (c < channel_count_ - 1) fPrevAGCState = agc_state_[c + 1][st]; else fPrevAGCState = agc_state_[c][st]; fCurrAGCState = agc_state_[c][st]; if (c > 0) fNextAGCState = agc_state_[c - 1][st]; else fNextAGCState = agc_state_[c][st]; // Spatial smoothing /*! \todo Something odd is going on here * I think this line is not quite right. */ float agc_avg = fAGCEpsLeft * fPrevAGCState + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState + fAGCEpsRight * fNextAGCState; // Temporal smoothing agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st]) + agc_epsilons_[st] * detect_[c] * agc_gains_[st]; } } float fOffset = 1.0f - agc_factor_ * DetectFun(0.0f); for (int i = 0; i < channel_count_; ++i) { float fAGCStateMean = 0.0f; for (int j = 0; j < agc_stage_count_; ++j) fAGCStateMean += agc_state_[i][j]; fAGCStateMean /= static_cast<float>(agc_stage_count_); pole_damps_mod_[i] = pole_dampings_[i] * (fOffset + agc_factor_ * fAGCStateMean); } } float ModulePZFC::DetectFun(float fIN) { if (fIN < 0.0f) fIN = 0.0f; float fDetect = Minimum(1.0f, fIN); float fA = 0.25f; return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f); } inline float ModulePZFC::Minimum(float a, float b) { if (a < b) return a; else return b; } void ModulePZFC::Process(const SignalBank& input) { // Set the start time of the output buffer output_.set_start_time(input.start_time()); for (int iSample = 0; iSample < input.buffer_length(); ++iSample) { float fInput = input[0][iSample]; // Lowpass filter the input with a zero at PI fInput = 0.5f * fInput + 0.5f * last_input_; last_input_ = input[0][iSample]; inputs_[channel_count_ - 1] = fInput; for (int c = 0; c < channel_count_ - 1; ++c) inputs_[c] = previous_out_[c + 1]; // PZBankStep2 // to save a bunch of divides float damp_rate = 1.0f / (maxdamp_ - mindamp_); for (int c = channel_count_ - 1; c > -1; --c) { float interp_factor = (pole_damps_mod_[c] - mindamp_) * damp_rate; float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor; float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor; // optional improvement to constellation adds a bit to r float fd = pole_frequencies_[c] * pole_damps_mod_[c]; // quadratic for small values, then linear r = r + 0.25f * fd * Minimum(0.05f, fd); float zb1 = -2.0f * x; float zb2 = r * r; /* canonic poles but with input provided where unity DC gain is assured * (mean value of state is always equal to mean value of input) */ float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1 - (state_2_[c] - inputs_[c]) * zb2; // canonic zeros part as before: float output = za0_[c] * new_state + za1_[c] * state_1_[c] + za2_[c] * state_2_[c]; // cubic compression nonlinearity output = output - 0.0001f * pow(output, 3); output_.set_sample(c, iSample, output); detect_[c] = DetectFun(output); state_2_[c] = state_1_[c]; state_1_[c] = new_state; } if (do_agc_step_) AGCDampStep(); for (int c = 0; c < channel_count_; ++c) previous_out_[c] = output_[c][iSample]; } PushOutput(); } } // namespace aimc