Mercurial > hg > aimc
view src/Scripts/Multi-slice_test.py @ 94:cbe78255b12c
- AWS
author | tomwalters |
---|---|
date | Fri, 13 Aug 2010 10:28:14 +0000 |
parents | c5f5e9569863 |
children |
line wrap: on
line source
#!/usr/bin/env python # encoding: utf-8 # # AIM-C: A C++ implementation of the Auditory Image Model # http://www.acousticscale.org/AIMC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Profiles_test.py Created by Thomas Walters on 2010-02-22. Copyright 2010 Thomas Walters <tom@acousticscale.org> Test the AIM-C model from filterbank to SSI profiles """ import aimc from scipy.io import wavfile from scipy import io import scipy import pylab from itertools import izip, chain, repeat def grouper(n, iterable, padvalue=None): "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')" return izip(*[chain(iterable, repeat(padvalue, n-1))]*n) def BankToArray(out_bank): channel_count = out_bank.channel_count() out_buffer_length = out_bank.buffer_length() out = scipy.zeros((channel_count, out_buffer_length)) for ch in range(0, channel_count): for i in range(0, out_buffer_length): out[ch, i] = out_bank.sample(ch, i) return out def StrobesToList(bank): channel_count = bank.channel_count() strobes = [] for ch in range(0, channel_count): s = [] for i in range(0, bank.strobe_count(ch)): s.append(bank.strobe(ch, i)) strobes.append(s) def main(): wave_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/Sounds/" #features_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/work08-jess-original-rec_rubber/features/" file_name = "ii/ii172.5p112.5s100.0t+000itd" wave_suffix = ".wav" features_suffix = ".mat" frame_period_ms = 10; wave_filename = wave_path + file_name + wave_suffix #features_filename = features_path + file_name + features_suffix (sample_rate, input_wave) = wavfile.read(wave_filename) wave_length = input_wave.size buffer_length = int(frame_period_ms * sample_rate / 1000) #pylab.plot(input_wave) #pylab.show() input_sig = aimc.SignalBank() input_sig.Initialize(1, buffer_length, sample_rate) parameters = aimc.Parameters() parameters.SetFloat("sai.frame_period_ms", 10.0) parameters.SetInt("input.buffersize", 480) mod_gt = aimc.ModuleGammatone(parameters) mod_hl = aimc.ModuleHCL(parameters) mod_strobes = aimc.ModuleLocalMax(parameters) mod_sai = aimc.ModuleSAI(parameters) parameters.SetBool("ssi.pitch_cutoff", True) parameters.SetBool("ssi.weight_by_cutoff", False) parameters.SetBool("ssi.weight_by_scaling", True) parameters.SetBool("ssi.log_cycles_axis", True) mod_ssi = aimc.ModuleSSI(parameters) parameters.SetFloat("nap.lowpass_cutoff", 100.0) mod_nap_smooth = aimc.ModuleHCL(parameters) mod_scaler = aimc.ModuleScaler(parameters) parameters.SetBool("slice.all", False) parameters.SetInt("slice.lower_index", 77) parameters.SetInt("slice.upper_index", 150) slice_1 = aimc.ModuleSlice(parameters) parameters.SetInt("slice.lower_index", 210) parameters.SetInt("slice.upper_index", 240) slice_2 = aimc.ModuleSlice(parameters) parameters.SetInt("slice.lower_index", 280) parameters.SetInt("slice.upper_index", 304) slice_3 = aimc.ModuleSlice(parameters) parameters.SetInt("slice.lower_index", 328) parameters.SetInt("slice.upper_index", 352) slice_4 = aimc.ModuleSlice(parameters) parameters.SetBool("slice.all", True) slice_5 = aimc.ModuleSlice(parameters) nap_profile = aimc.ModuleSlice(parameters) features_1 = aimc.ModuleGaussians(parameters) features_2 = aimc.ModuleGaussians(parameters) features_3 = aimc.ModuleGaussians(parameters) features_4 = aimc.ModuleGaussians(parameters) features_5 = aimc.ModuleGaussians(parameters) mod_gt.AddTarget(mod_hl) mod_gt.AddTarget(mod_nap_smooth) mod_nap_smooth.AddTarget(nap_profile) nap_profile.AddTarget(mod_scaler) mod_hl.AddTarget(mod_strobes) mod_strobes.AddTarget(mod_sai) mod_sai.AddTarget(mod_ssi) mod_ssi.AddTarget(slice_1) mod_ssi.AddTarget(slice_2) mod_ssi.AddTarget(slice_3) mod_ssi.AddTarget(slice_4) mod_ssi.AddTarget(slice_5) slice_1.AddTarget(features_1) slice_2.AddTarget(features_2) slice_3.AddTarget(features_3) slice_4.AddTarget(features_4) slice_5.AddTarget(features_5) mod_gt.Initialize(input_sig) correct_count = 0; incorrect_count = 0; scaled_wave = [] for sample in input_wave: scaled_wave.append(float(sample / float(pow(2,15) - 1))) i = 0 wave_chunks = grouper(buffer_length, scaled_wave, 0) out_bmm = [] out_nap = [] out_smooth_nap_profile = [] out_strobes = [] out_sais = [] out_ssis = [] out_slice_1 = [] out_slice_2 = [] out_slice_3 = [] out_slice_4 = [] out_slice_5 = [] out_feat_1 = [] out_feat_2 = [] out_feat_3 = [] out_feat_4 = [] out_feat_5 = [] for chunk in wave_chunks: i = 0 for sample in chunk: input_sig.set_sample(0, i, float(sample)) i += 1 mod_gt.Process(input_sig) #out_bmm.append(BankToArray(mod_gt.GetOutputBank())) #out_nap.append(BankToArray(mod_hl.GetOutputBank())) out_smooth_nap_profile.append(BankToArray(mod_scaler.GetOutputBank())) #out_strobes.append(BankToArray(mod_strobes.GetOutputBank())) #out_sais.append(BankToArray(mod_sai.GetOutputBank())) out_ssis.append(BankToArray(mod_ssi.GetOutputBank())) out_slice_1.append(BankToArray(slice_1.GetOutputBank())) out_slice_2.append(BankToArray(slice_2.GetOutputBank())) out_slice_3.append(BankToArray(slice_3.GetOutputBank())) out_slice_4.append(BankToArray(slice_4.GetOutputBank())) out_slice_5.append(BankToArray(slice_5.GetOutputBank())) out_feat_1.append(BankToArray(features_1.GetOutputBank())) out_feat_2.append(BankToArray(features_2.GetOutputBank())) out_feat_3.append(BankToArray(features_3.GetOutputBank())) out_feat_4.append(BankToArray(features_4.GetOutputBank())) out_feat_5.append(BankToArray(features_5.GetOutputBank())) out_bank = mod_gt.GetOutputBank() channel_count = out_bank.channel_count() cfs = scipy.zeros((channel_count)) for ch in range(0, channel_count): cfs[ch] = out_bank.centre_frequency(ch) outmat = dict(bmm=out_bmm, nap=out_nap, sais=out_sais, ssis=out_ssis, slice1=out_slice_1, slice2=out_slice_2, slice3=out_slice_3, slice4=out_slice_4, slice5=out_slice_5, feat1=out_feat_1, feat2=out_feat_2, feat3=out_feat_3, feat4=out_feat_4, feat5=out_feat_5, nap_smooth=out_smooth_nap_profile, centre_freqs=cfs) io.savemat("src/Scripts/profile_out.mat", outmat, oned_as='column') pass if __name__ == '__main__': main()