Mercurial > hg > aimc
view src/Modules/SNR/ModuleNoise.cc @ 94:cbe78255b12c
- AWS
author | tomwalters |
---|---|
date | Fri, 13 Aug 2010 10:28:14 +0000 |
parents | bee31e7ebf4b |
children |
line wrap: on
line source
// Copyright 2010, Thomas Walters // // AIM-C: A C++ implementation of the Auditory Image Model // http://www.acousticscale.org/AIMC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /*! * \author Thomas Walters <tom@acousticscale.org> * \date created 2010/02/24 * \version \$Id$ */ // Use the boost RNGs to generate Gaussian noise #include <boost/random.hpp> #include <math.h> #include "Modules/SNR/ModuleNoise.h" namespace aimc { ModuleNoise::ModuleNoise(Parameters *params) : Module(params), gaussian_variate_(boost::mt19937(), boost::normal_distribution<float>(0.0f, 1.0f)) { module_description_ = "Adds noise to a signal"; module_identifier_ = "noise"; module_type_ = "snr"; module_version_ = "$Id$"; pink_ = parameters_->DefaultBool("noise.pink", true); // Noise level relative to unit-variance Gaussian noise (ie. 0dB will give a // noise with an RMS level of 1.0) float snr_db = parameters_->DefaultFloat("noise.level_db", 0.0f); multiplier_ = pow(10.0f, snr_db / 20.0f); } ModuleNoise::~ModuleNoise() { } bool ModuleNoise::InitializeInternal(const SignalBank &input) { // Copy the parameters of the input signal bank into internal variables, so // that they can be checked later. sample_rate_ = input.sample_rate(); buffer_length_ = input.buffer_length(); channel_count_ = input.channel_count(); output_.Initialize(input); ResetInternal(); return true; } void ModuleNoise::ResetInternal() { s0_ = 0.0f; s1_ = 0.0f; s2_ = 0.0f; } void ModuleNoise::Process(const SignalBank &input) { // Check to see if the module has been initialized. If not, processing // should not continue. if (!initialized_) { LOG_ERROR(_T("Module %s not initialized."), module_identifier_.c_str()); return; } // Check that ths input this time is the same as the input passed to // Initialize() if (buffer_length_ != input.buffer_length() || channel_count_ != input.channel_count()) { LOG_ERROR(_T("Mismatch between input to Initialize() and input to " "Process() in module %s."), module_identifier_.c_str()); return; } for (int c = 0; c < input.channel_count(); ++c) { for (int i = 0; i < input.buffer_length(); ++i) { float s = input[c][i]; float n = gaussian_variate_(); if (pink_) { // Pink noise filter coefficients from // ccrma.stanford.edu/~jos/sasp/Example_Synthesis_1_F_Noise.html // Smith, Julius O. Spectral Audio Signal Processing, October 2008 // Draft, http://ccrma.stanford.edu/~jos/sasp/, online book, // accessed 2010-02-27. float f = 0.049922035 * n + s0_; s0_ = -0.095993537 * n - (-2.494956002 * f) + s1_; s1_ = 0.050612699 * n - (2.017265875 * f) + s2_; s2_ = -0.004408786 * n - (-0.522189400 * f); n = f; } s += multiplier_ * n; output_.set_sample(c, i, s); } } PushOutput(); } } // namespace aimc